論文の概要: On the Generalization of PINNs outside the training domain and the
Hyperparameters influencing it
- arxiv url: http://arxiv.org/abs/2302.07557v2
- Date: Thu, 24 Aug 2023 13:07:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 18:20:49.555954
- Title: On the Generalization of PINNs outside the training domain and the
Hyperparameters influencing it
- Title(参考訳): トレーニング領域外のPINNの一般化とそれに影響を与えるハイパーパラメータについて
- Authors: Andrea Bonfanti, Roberto Santana, Marco Ellero, Babak Gholami
- Abstract要約: PINNは、解データを必要としない微分方程式の解をエミュレートするように訓練されたニューラルネットワークアーキテクチャである。
トレーニング領域外におけるPINN予測の挙動を実証分析する。
PINNのアルゴリズム設定が一般化のポテンシャルに影響を及ぼすかどうかを評価し,予測に対する各効果を示す。
- 参考スコア(独自算出の注目度): 1.3927943269211593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-Informed Neural Networks (PINNs) are Neural Network architectures
trained to emulate solutions of differential equations without the necessity of
solution data. They are currently ubiquitous in the scientific literature due
to their flexible and promising settings. However, very little of the available
research provides practical studies that aim for a better quantitative
understanding of such architecture and its functioning. In this paper, we
perform an empirical analysis of the behavior of PINN predictions outside their
training domain. The primary goal is to investigate the scenarios in which a
PINN can provide consistent predictions outside the training area.
Thereinafter, we assess whether the algorithmic setup of PINNs can influence
their potential for generalization and showcase the respective effect on the
prediction. The results obtained in this study returns insightful and at times
counterintuitive perspectives which can be highly relevant for architectures
which combines PINNs with domain decomposition and/or adaptive training
strategies.
- Abstract(参考訳): 物理情報ニューラルネットワーク(英: Physics-Informed Neural Networks、PINN)は、微分方程式の解を、解データなしでエミュレートするよう訓練されたニューラルネットワークアーキテクチャである。
それらは、柔軟で有望な設定のため、現在科学文献でユビキタスである。
しかし、利用可能な研究のごく一部は、そのようなアーキテクチャとその機能をより定量的に理解することを目的とした実践的研究を提供している。
本稿では,トレーニング領域外におけるPINN予測の挙動を実証的に分析する。
第一の目的は、トレーニングエリア外でPINNが一貫した予測を提供するシナリオを調査することである。
以下、ピンのアルゴリズム構成が一般化の可能性に影響を及ぼすかどうかを評価し、予測に対するそれぞれの効果を示す。
本研究で得られた結果は,ピンとドメイン分解および/または適応的トレーニング戦略を組み合わせたアーキテクチャに非常に関連性のある,洞察に富み,時には直観に反する視点を返す。
関連論文リスト
- Architectural Strategies for the optimization of Physics-Informed Neural
Networks [30.92757082348805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)における前方および逆問題に対処するための有望な道を提供する
その顕著な経験的成功にもかかわらず、PINNは様々なPDEで悪名高いトレーニング課題の評判を得た。
論文 参考訳(メタデータ) (2024-02-05T04:15:31Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - Error convergence and engineering-guided hyperparameter search of PINNs:
towards optimized I-FENN performance [0.0]
PINNコンポーネントの2つの重要な側面に着目し,I-FENNの厳格さと性能を向上させる。
本稿では,新しい総合的パフォーマンス指標のセットに基づく体系的な数値的アプローチを提案する。
提案された分析は、科学と工学の他の応用にも直接拡張することができる。
論文 参考訳(メタデータ) (2023-03-03T17:39:06Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
physic-Informed Neural Networks (PINN) は、モデル方程式を符号化するニューラルネットワーク(NN)である。
PINNは現在ではPDE、分数方程式、積分微分方程式の解法として使われている。
論文 参考訳(メタデータ) (2022-01-14T19:05:44Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
本稿では, 運動量バランスと弾性の関係をPINNに組み込む方法について解説し, 線形弾性への応用について詳細に検討する。
論文 参考訳(メタデータ) (2020-02-14T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。