論文の概要: Adversarial Learning for Neural PDE Solvers with Sparse Data
- arxiv url: http://arxiv.org/abs/2409.02431v1
- Date: Wed, 4 Sep 2024 04:18:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 20:15:07.501623
- Title: Adversarial Learning for Neural PDE Solvers with Sparse Data
- Title(参考訳): スパースデータを用いたニューラルPDE解の逆学習
- Authors: Yunpeng Gong, Yongjie Hou, Zhenzhong Wang, Zexin Lin, Min Jiang,
- Abstract要約: 本研究では,ロバストトレーニングのためのシステムモデル拡張(Systematic Model Augmentation for Robust Training)という,ニューラルネットワークPDEの普遍的学習戦略を紹介する。
モデルの弱点に挑戦し改善することに集中することにより、SMARTはデータスカース条件下でのトレーニング中の一般化エラーを低減する。
- 参考スコア(独自算出の注目度): 4.226449585713182
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural network solvers for partial differential equations (PDEs) have made significant progress, yet they continue to face challenges related to data scarcity and model robustness. Traditional data augmentation methods, which leverage symmetry or invariance, impose strong assumptions on physical systems that often do not hold in dynamic and complex real-world applications. To address this research gap, this study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training (SMART). By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions, leading to significant improvements in prediction accuracy across various PDE scenarios. The effectiveness of the proposed method is demonstrated through both theoretical analysis and extensive experimentation. The code will be available.
- Abstract(参考訳): 偏微分方程式(PDE)に対するニューラルネットワークの解法は大きな進歩を遂げているが、データ不足やモデル堅牢性に関連する課題に直面し続けている。
対称性や不変性を利用する従来のデータ拡張法は、しばしば動的で複雑な現実世界の応用に当てはまらない物理系に強い仮定を課す。
この研究ギャップに対処するために、この研究は、SMART(Systematic Model Augmentation for Robust Training)と名付けられたニューラルネットワークPDEの普遍的な学習戦略を導入する。
SMARTはモデルの弱点に挑戦し改善することに集中することにより、データスカース条件下でのトレーニング中の一般化誤差を低減し、様々なPDEシナリオにおける予測精度を大幅に改善する。
提案手法の有効性は,理論解析と広範囲な実験によって実証される。
コードは利用可能です。
関連論文リスト
- CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
条件付きニューラル微分方程式(CGNSDE)と呼ばれる新しい知識ベースおよび機械学習ハイブリッドモデリング手法を開発した。
標準的なニューラルネットワーク予測モデルとは対照的に、CGNSDEは前方予測タスクと逆状態推定問題の両方に効果的に取り組むように設計されている。
論文 参考訳(メタデータ) (2024-04-10T05:32:03Z) - PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers [40.097474800631]
時間依存偏微分方程式(PDE)は、科学や工学においてユビキタスである。
ディープニューラルネットワークに基づくサロゲートへの関心が高まっている。
論文 参考訳(メタデータ) (2023-08-10T17:53:05Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
物理インフォームドディープラーニング(PiDL)は、物理原理をモデルに組み込むことによって、これらの課題に対処する。
我々は、ニューラルネットワークアーキテクチャに離散化された支配方程式を焼いて、物理の事前知識を活用することを提案する。
離散化されたPDEを畳み込み残差ネットワークを介して多分解能設定に埋め込むことにより、一般化可能性と長期予測を大幅に改善する。
論文 参考訳(メタデータ) (2022-05-09T01:27:58Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Adversarial Multi-task Learning Enhanced Physics-informed Neural
Networks for Solving Partial Differential Equations [9.823102211212582]
本稿では,多タスク学習手法,不確実性強調損失,勾配手術を学習pdeソリューションの文脈で活用する新しいアプローチを提案する。
実験では,提案手法が有効であることが判明し,従来手法と比較して未発見のデータポイントの誤差を低減できた。
論文 参考訳(メタデータ) (2021-04-29T13:17:46Z) - Accurate and Reliable Forecasting using Stochastic Differential
Equations [48.21369419647511]
ディープラーニングモデルにとって、現実世界の環境に浸透する不確実性を適切に特徴付けることは、非常に困難である。
本論文では,HNNの予測平均と分散の相互作用を特徴づけるSDE-HNNを開発した。
本手法は,予測性能と不確実性定量化の両方の観点から,最先端のベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-03-28T04:18:11Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。