論文の概要: Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems
- arxiv url: http://arxiv.org/abs/2308.08511v2
- Date: Thu, 17 Aug 2023 05:09:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 10:21:59.576548
- Title: Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems
- Title(参考訳): 2次半次スコアモデルによる3次元Ill-posed逆問題の解法
- Authors: Zirong Li, Yanyang Wang, Jianjia Zhang and Weiwen Wu, Hengyong Yu
- Abstract要約: 本稿では,3次元ボリューム再構成のための2次半順序スコアベースモデル(TOSM)を提案する。
トレーニング期間中、TOSMは2次元空間のデータ分布を学習し、トレーニングの複雑さを低減する。
再構成フェーズでは、TOSMは3方向の相補的なスコアを利用して、3次元空間のデータ分布を更新する。
- 参考スコア(独自算出の注目度): 7.074380879971194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are crucial
technologies in the field of medical imaging. Score-based models have proven to
be effective in addressing different inverse problems encountered in CT and
MRI, such as sparse-view CT and fast MRI reconstruction. However, these models
face challenges in achieving accurate three dimensional (3D) volumetric
reconstruction. The existing score-based models primarily focus on
reconstructing two dimensional (2D) data distribution, leading to
inconsistencies between adjacent slices in the reconstructed 3D volumetric
images. To overcome this limitation, we propose a novel two-and-a-half order
score-based model (TOSM). During the training phase, our TOSM learns data
distributions in 2D space, which reduces the complexity of training compared to
directly working on 3D volumes. However, in the reconstruction phase, the TOSM
updates the data distribution in 3D space, utilizing complementary scores along
three directions (sagittal, coronal, and transaxial) to achieve a more precise
reconstruction. The development of TOSM is built on robust theoretical
principles, ensuring its reliability and efficacy. Through extensive
experimentation on large-scale sparse-view CT and fast MRI datasets, our method
demonstrates remarkable advancements and attains state-of-the-art results in
solving 3D ill-posed inverse problems. Notably, the proposed TOSM effectively
addresses the inter-slice inconsistency issue, resulting in high-quality 3D
volumetric reconstruction.
- Abstract(参考訳): CT(CT)とMRI(MRI)は医療画像の分野で重要な技術である。
スコアベースモデルは、スパースビューCTや高速MRI再構成など、CTやMRIで発生する様々な逆問題に対処するのに有効であることが証明されている。
しかし、これらのモデルは正確な3次元(3次元)体積再構成を達成する上で困難に直面している。
既存のスコアベースモデルは主に2次元(2次元)データ分布の再構成に焦点を合わせており、再構成された3次元ボリューム画像の隣接スライス間の不整合をもたらす。
この制限を克服するために、新しい2次半スコアベースモデル(TOSM)を提案する。
トレーニング期間中、TOSMは2次元空間のデータ分布を学習し、3次元ボリュームで直接作業するよりも、トレーニングの複雑さを低減する。
しかし、再構成段階では、TOSMは3次元空間のデータ分布を更新し、3方向(矢状、コロナ、横軸)の相補的なスコアを利用してより正確な再構成を行う。
TOSMの開発は堅牢な理論原理に基づいており、信頼性と有効性を保証する。
大規模なスパークビューCTと高速MRIデータセットの広範囲な実験を通じて,本手法は顕著な進歩を示し,3次元不規則逆問題に対する最先端の結果を得る。
特に,TOSMはスライス不整合問題に対処し,高品質な3次元ボリューム再構成を実現する。
関連論文リスト
- Slice-Consistent 3D Volumetric Brain CT-to-MRI Translation with 2D Brownian Bridge Diffusion Model [3.4248731707266264]
神経画像では、一般的に、脳のCTはMRIよりも費用効率が高く、アクセスしやすい。
医用画像・画像翻訳(I2I)は有望な解決策である。
本研究は,2次元 DM のみに基づく高品質な3次元医療用 I2I を実現する最初の試みである。
論文 参考訳(メタデータ) (2024-07-06T12:13:36Z) - Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction [9.848266253196307]
Cone-Beam Computed Tomography (CBCT) は医用画像の撮影に欠かせない手法であるが、放射線照射が臨床応用に懸念をもたらす。
本稿では,3次元ガウス空間における特徴分布を表現するために3次元ガウス空間を利用する新しい再構成フレームワーク,DIF-Gaussianを提案する。
2つの公開データセット上でDIF-Gaussianを評価し,従来の最先端手法よりもはるかに優れた再構成性能を示した。
論文 参考訳(メタデータ) (2024-07-01T08:48:04Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
現在の商用デジタルサブトラクション・アンジオグラフィー(DSA)システムは通常、再構築を行うために数百のスキャンビューを要求する。
スパース・ビューDSA画像のダイナミックな血流と不十分な入力は,3次元血管再建作業において重要な課題である。
本稿では,時間に依存しない容器確率場を用いてこの問題を効果的に解くことを提案する。
論文 参考訳(メタデータ) (2024-05-17T11:23:33Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with
Implicit Neural Representation [3.8215162658168524]
Oral-3Dv2は、単一のパノラマX線画像から3Dラジオロジーを再構成する非逆学習モデルである。
本モデルは,2次元座標を3次元空間内のボクセルの密度値にマッピングすることにより,暗黙的に3次元口腔構造を表現することを学習する。
我々の知る限りでは、これは1枚のパノラマX線画像から3Dラジオグラフィ再構成における非逆学習モデルの最初の作品である。
論文 参考訳(メタデータ) (2023-03-21T18:17:27Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
本稿では,2つの垂直2次元拡散モデルを用いて3次元逆問題の解法を提案する。
MRI Z軸超解像, 圧縮センシングMRI, スパースCTなどの3次元医用画像再構成作業に有効である。
論文 参考訳(メタデータ) (2023-03-15T08:28:06Z) - Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models [33.343489006271255]
拡散モデルは、高品質なサンプルを持つ新しい最先端の生成モデルとして登場した。
そこで本研究では, モデルに基づく2次元拡散を, 全次元にわたるコヒーレントな再構成を達成できるように, 実験時の残りの方向で先行する2次元拡散を拡大することを提案する。
提案手法は,1つのコモディティGPU上で動作可能であり,新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2022-11-19T10:32:21Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
より正確な腫瘍検出のためのMRI特徴抽出のための新しいビューディペンタングル変換器を提案する。
まず, 3次元脳スキャンにおいて, 異なる位置の長距離相関を求める。
第二に、トランスフォーマーはスライス機能のスタックを複数の2Dビューとしてモデル化し、これらの機能をビュー・バイ・ビューとして拡張する。
第三に、提案したトランスモジュールをトランスのバックボーンに展開し、脳病変を取り巻く2D領域を効果的に検出する。
論文 参考訳(メタデータ) (2022-09-20T11:58:23Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Enhanced 3D Myocardial Strain Estimation from Multi-View 2D CMR Imaging [0.0]
CMR SSFP画像からの複数方向からの相補的変位情報を組み合わせた3次元心筋ひずみ推定法を提案する。
商用ソフトウェア(セグメント,メドビソ)に実装された2次元非剛性登録アルゴリズムを用いて,短軸,4角,2角のビューのセットを登録する。
次に, 運動3方向の補間関数を作成し, 患者固有の左室の四面体メッシュ表現を変形させる。
論文 参考訳(メタデータ) (2020-09-25T22:47:50Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。