論文の概要: Large Language Models in Introductory Programming Education: ChatGPT's
Performance and Implications for Assessments
- arxiv url: http://arxiv.org/abs/2308.08572v1
- Date: Tue, 15 Aug 2023 19:48:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-27 05:15:30.741005
- Title: Large Language Models in Introductory Programming Education: ChatGPT's
Performance and Implications for Assessments
- Title(参考訳): 入門プログラミング教育における大規模言語モデル:ChatGPTの性能と評価への影響
- Authors: Natalie Kiesler and Daniel Schiffner
- Abstract要約: 本稿では,Large Language Models (LLMs) ChatGPT-3.5とGPT-4の性能について検討する。
その結果、94.4から95.8%の正答率と、テキストの説明やプログラムコードの信頼性が示された。
- 参考スコア(独自算出の注目度): 0.16317061277457
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper investigates the performance of the Large Language Models (LLMs)
ChatGPT-3.5 and GPT-4 in solving introductory programming tasks. Based on the
performance, implications for didactic scenarios and assessment formats
utilizing LLMs are derived. For the analysis, 72 Python tasks for novice
programmers were selected from the free site CodingBat. Full task descriptions
were used as input to the LLMs, while the generated replies were evaluated
using CodingBat's unit tests. In addition, the general availability of textual
explanations and program code was analyzed. The results show high scores of
94.4 to 95.8% correct responses and reliable availability of textual
explanations and program code, which opens new ways to incorporate LLMs into
programming education and assessment.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) ChatGPT-3.5とGPT-4の性能について検討する。
この性能に基づいて, LLMを用いたシナリオとアセスメント形式を導出する。
分析では、初心者プログラマ向けの72のPythonタスクが無料サイトCodingBatから選択された。
完全なタスク記述は LLM への入力として使用され、生成した応答は CodingBat の単体テストを用いて評価された。
また,テキスト説明とプログラムコードの一般提供についても分析を行った。
その結果、94.4~95.8%の正答率と、テキストの説明やプログラムコードの信頼性が向上し、LCMをプログラム教育と評価に組み込む新たな方法が開かれた。
関連論文リスト
- TestBench: Evaluating Class-Level Test Case Generation Capability of Large Language Models [8.22619177301814]
クラスレベルのLLMベースのテストケース生成のためのベンチマークであるTestBenchを紹介する。
GitHub上の9つの実世界の大規模プロジェクトから108のJavaプログラムのデータセットを構築します。
本稿では,構文的正当性,コンパイル的正当性,テスト的正当性,コードカバレッジ率,欠陥検出率という,テストケースの5つの側面を考慮した詳細な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-26T06:18:06Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
データサイエンスタスクにコードインタプリタを利用するLLMの能力を総合的に評価する,CIBenchという対話型評価フレームワークを提案する。
評価データセットは,LLM-人的協調手法を用いて構築され,連続的かつ対話的なIPythonセッションを活用することによって,実際のワークフローをシミュレートする。
コードインタプリタの利用において, CIBench 上で 24 個の LLM の能力を解析し, 将来の LLM に対する貴重な洞察を提供するため, 広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2024-07-15T07:43:55Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
大規模言語モデル(LLM)は、コード関連のタスクのパフォーマンスを大幅に向上させた。
本稿では,LLMにおけるコード要約の体系的および包括的研究を行う。
論文 参考訳(メタデータ) (2024-07-09T05:48:42Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
BigCodeBenchは、大規模言語モデル(LLM)に対して、139のライブラリと7つのドメインから1140のきめ細かいタスクに対して、複数の関数呼び出しをツールとして呼び出すためのベンチマークである。
評価の結果,LLMは機能コールを正確に使用するための複雑な指示に従うことができず,スコアは最大60%,人的性能は97%と極めて低いことがわかった。
そこで本研究では,BigCodeBench-Instructという自然言語指向の変種を提案する。
論文 参考訳(メタデータ) (2024-06-22T15:52:04Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Automated Assessment of Students' Code Comprehension using LLMs [0.3293989832773954]
大規模言語モデル(LLM)とエンコーダベースのセマンティックテキスト類似(STS)モデルを評価する。
この結果から,LLMはプログラミング領域における生徒の短解評価において,微調整エンコーダモデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-19T20:39:12Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity [0.0]
大規模言語モデル (LLM) は、人間のようなテキスト生成と処理を模倣する非並列的な技術を示している。
自然言語のプロンプトを実行可能なコードに変換する可能性は、ソフトウェア開発プラクティスの大きな変化を約束します。
論文 参考訳(メタデータ) (2023-11-10T23:41:41Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - CodeApex: A Bilingual Programming Evaluation Benchmark for Large
Language Models [43.655927559990616]
我々は,LLMのプログラミング理解,コード生成,コード修正能力に着目したベンチマークデータセットであるCodeApexを提案する。
汎用モデルと特化モデルの両方を含む,広く使用されているLLMを12種類評価した。
GPT-4は最高のプログラミング能力を示し、それぞれ69%、54%、66%の精度を達成している。
論文 参考訳(メタデータ) (2023-09-05T04:12:01Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。