Neural oscillators for generalization of physics-informed machine
learning
- URL: http://arxiv.org/abs/2308.08989v2
- Date: Mon, 18 Dec 2023 17:56:24 GMT
- Title: Neural oscillators for generalization of physics-informed machine
learning
- Authors: Taniya Kapoor, Abhishek Chandra, Daniel M. Tartakovsky, Hongrui Wang,
Alfredo Nunez, Rolf Dollevoet
- Abstract summary: A primary challenge of physics-informed machine learning (PIML) is its generalization beyond the training domain.
This paper aims to enhance the generalization capabilities of PIML, facilitating practical, real-world applications.
We leverage the inherent causality and temporal sequential characteristics of PDE solutions to fuse PIML models with recurrent neural architectures.
- Score: 1.893909284526711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A primary challenge of physics-informed machine learning (PIML) is its
generalization beyond the training domain, especially when dealing with complex
physical problems represented by partial differential equations (PDEs). This
paper aims to enhance the generalization capabilities of PIML, facilitating
practical, real-world applications where accurate predictions in unexplored
regions are crucial. We leverage the inherent causality and temporal sequential
characteristics of PDE solutions to fuse PIML models with recurrent neural
architectures based on systems of ordinary differential equations, referred to
as neural oscillators. Through effectively capturing long-time dependencies and
mitigating the exploding and vanishing gradient problem, neural oscillators
foster improved generalization in PIML tasks. Extensive experimentation
involving time-dependent nonlinear PDEs and biharmonic beam equations
demonstrates the efficacy of the proposed approach. Incorporating neural
oscillators outperforms existing state-of-the-art methods on benchmark problems
across various metrics. Consequently, the proposed method improves the
generalization capabilities of PIML, providing accurate solutions for
extrapolation and prediction beyond the training data.
Related papers
- Physics-informed kernel learning [7.755962782612672]
We propose a tractable estimator that minimizes the physics-informed risk function.
We show that PIKL can outperform physics-informed neural networks in terms of both accuracy and computation time.
arXiv Detail & Related papers (2024-09-20T06:55:20Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Slow Invariant Manifolds of Singularly Perturbed Systems via
Physics-Informed Machine Learning [0.0]
We present a physics-informed machine-learning (PIML) approach for the approximation of slow invariant manifold (SIMs) of singularly perturbed systems.
We show that the proposed PIML scheme provides approximations, of equivalent or even higher accuracy, than those provided by other traditional GSPT-based methods.
A comparison of the computational costs between symbolic, automatic and numerical approximation of the required derivatives in the learning process is also provided.
arXiv Detail & Related papers (2023-09-14T14:10:22Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
arXiv Detail & Related papers (2023-01-15T21:57:43Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
Physics-informed deep learning (PiDL) addresses these challenges by incorporating physical principles into the model.
We propose to leverage physics prior knowledge by baking'' the discretized governing equations into the neural network architecture.
This method, embedding discretized PDEs through convolutional residual networks in a multi-resolution setting, largely improves the generalizability and long-term prediction.
arXiv Detail & Related papers (2022-05-09T01:27:58Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Applying physics-based loss functions to neural networks for improved
generalizability in mechanics problems [3.655021726150368]
Informed Machine Learning (PIML) has gained momentum in the last 5 years with scientists and researchers to utilize the benefits afforded by advances in machine learning.
In this work a new approach to utilizing PIML is discussed that deals with the use of physics-based loss functions.
arXiv Detail & Related papers (2021-04-30T20:31:09Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.