Physics-Informed Linear Model (PILM): Analytical Representations and Application to Crustal Strain Rate Estimation
- URL: http://arxiv.org/abs/2507.12218v2
- Date: Thu, 17 Jul 2025 05:39:25 GMT
- Title: Physics-Informed Linear Model (PILM): Analytical Representations and Application to Crustal Strain Rate Estimation
- Authors: Tomohisa Okazaki,
- Abstract summary: We investigate a physics-informed linear model (PILM) that uses linear combinations of basis functions to represent solutions.<n>The PILM provides an analytically solvable framework applicable to linear forward and inverse problems, underdetermined systems, and physical regularization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many physical systems are described by partial differential equations (PDEs), and solving these equations and estimating their coefficients or boundary conditions (BCs) from observational data play a crucial role in understanding the associated phenomena. Recently, a machine learning approach known as physics-informed neural network, which solves PDEs using neural networks by minimizing the sum of residuals from the PDEs, BCs, and data, has gained significant attention in the scientific community. In this study, we investigate a physics-informed linear model (PILM) that uses linear combinations of basis functions to represent solutions, thereby enabling an analytical representation of optimal solutions. The PILM was formulated and verified for illustrative forward and inverse problems including cases with uncertain BCs. Furthermore, the PILM was applied to estimate crustal strain rates using geodetic data. Specifically, physical regularization that enforces elastic equilibrium on the velocity fields was compared with mathematical regularization that imposes smoothness constraints. From a Bayesian perspective, mathematical regularization exhibited superior performance. The PILM provides an analytically solvable framework applicable to linear forward and inverse problems, underdetermined systems, and physical regularization.
Related papers
- Interpretability and Generalization Bounds for Learning Spatial Physics [47.664155239439644]
This work applies the rigor of numerical analysis for differential equations to machine learning by specifically quantifying the accuracy of applying different ML techniques.<n>We prove generalization bounds and convergence rates under finite data discretizations and restricted training data subspaces.<n>Similar lack of generalization is empirically demonstrated for deep linear models, shallow neural networks, and physics-specific DeepONets and Neural Operators.
arXiv Detail & Related papers (2025-06-18T07:25:09Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs)<n>We propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations.<n>We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations.
arXiv Detail & Related papers (2024-11-28T13:16:20Z) - Physics-informed kernel learning [7.755962782612672]
We propose a tractable estimator that minimizes the physics-informed risk function.
We show that PIKL can outperform physics-informed neural networks in terms of both accuracy and computation time.
arXiv Detail & Related papers (2024-09-20T06:55:20Z) - Preconditioned FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.<n>A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.<n>In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
A physics-driven GraphSAGE approach is presented to solve problems governed by irregular PDEs.
A distance-related edge feature and a feature mapping strategy are devised to help training and convergence.
The robust PDE surrogate model for heat conduction problems parameterized by the Gaussian singularity random field source is successfully established.
arXiv Detail & Related papers (2024-03-13T14:25:15Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Neural oscillators for generalization of physics-informed machine
learning [1.893909284526711]
A primary challenge of physics-informed machine learning (PIML) is its generalization beyond the training domain.
This paper aims to enhance the generalization capabilities of PIML, facilitating practical, real-world applications.
We leverage the inherent causality and temporal sequential characteristics of PDE solutions to fuse PIML models with recurrent neural architectures.
arXiv Detail & Related papers (2023-08-17T13:50:03Z) - Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
We propose PINNs for the calibration of models from full-field displacement and global force data in a realistic regime.
We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data.
arXiv Detail & Related papers (2022-12-15T11:01:32Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.