論文の概要: Pattern recognition using spiking antiferromagnetic neurons
- arxiv url: http://arxiv.org/abs/2308.09071v2
- Date: Mon, 4 Mar 2024 17:29:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 02:47:31.449559
- Title: Pattern recognition using spiking antiferromagnetic neurons
- Title(参考訳): スパイク反強磁性ニューロンを用いたパターン認識
- Authors: Hannah Bradley (1), Steven Louis (2), Andrei Slavin (1), and Vasyl
Tyberkevych (1) ((1) Department of Physics, Oakland University, (2)
Department of Electrical Engineering, Oakland University)
- Abstract要約: 我々は、パターン認識を行うために、AFMニューロンの人工ニューラルネットワークを訓練する。
ニューロンスパイクの時間的位置に依存するスパイクパターン関連ニューロン(SPAN)と呼ばれる単純な機械学習アルゴリズムが訓練中に使用される。
物理時間のマイクロ秒未満では、AMMニューラルネットワークは、指定された時間ウィンドウ内でスパイクを生成してグリッドから構成されたシンボルを認識するように訓練される。
- 参考スコア(独自算出の注目度): 1.0243212430977688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spintronic devices offer a promising avenue for the development of nanoscale,
energy-efficient artificial neurons for neuromorphic computing. It has
previously been shown that with antiferromagnetic (AFM) oscillators, ultra-fast
spiking artificial neurons can be made that mimic many unique features of
biological neurons. In this work, we train an artificial neural network of AFM
neurons to perform pattern recognition. A simple machine learning algorithm
called spike pattern association neuron (SPAN), which relies on the temporal
position of neuron spikes, is used during training. In under a microsecond of
physical time, the AFM neural network is trained to recognize symbols composed
from a grid by producing a spike within a specified time window. We further
achieve multi-symbol recognition with the addition of an output layer to
suppress undesirable spikes. Through the utilization of AFM neurons and the
SPAN algorithm, we create a neural network capable of high-accuracy recognition
with overall power consumption on the order of picojoules.
- Abstract(参考訳): スピントロニクスデバイスは、ニューロモルフィックコンピューティングのためのナノスケールでエネルギー効率の良い人工ニューロンの開発に有望な道を提供する。
反強磁性(AFM)振動子では、生物学的ニューロンの多くの特徴を模倣する超高速な人工ニューロンが作られることが示されている。
本研究では、パターン認識を行うために、AFMニューロンのニューラルネットワークを訓練する。
スパイクパターン結合ニューロン(span)と呼ばれる単純な機械学習アルゴリズムは、ニューロンスパイクの時間的位置に依存するが、トレーニング中に使用される。
afmニューラルネットワークは、物理時間のマイクロ秒以下において、指定された時間ウィンドウ内でスパイクを生成してグリッドから成るシンボルを認識するように訓練される。
さらに、望ましくないスパイクを抑制するために出力層を追加してマルチシンボリック認識を実現する。
AFMニューロンとSPANアルゴリズムを利用して、ピコジュールの順序に基づいて、全体の消費電力で高精度な認識が可能なニューラルネットワークを構築する。
関連論文リスト
- Expressivity of Spiking Neural Networks [15.181458163440634]
本研究では,ニューロンの発射時間内に情報を符号化したスパイクニューラルネットワークの能力について検討する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
論文 参考訳(メタデータ) (2023-08-16T08:45:53Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
リークインテグレーテッド・アンド・ファイア(LIF)ニューロンを用いたスパイクニューラルネットワーク(SNN)は、音声認識(ASR)タスクで一般的に用いられている。
ここでは、スパイキングトランスから生成された逐次パターンを後処理する4種類の神経力学を紹介する。
その結果,DyTr-SNNは音素誤り率の低下,計算コストの低下,ロバスト性の向上など,非トイ自動音声認識タスクをうまく処理できることがわかった。
論文 参考訳(メタデータ) (2023-02-02T16:20:27Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Low Power Neuromorphic EMG Gesture Classification [3.8761525368152725]
スパイキングニューラルネットワーク(SNN)は、低消費電力でリアルタイムなEMGジェスチャー認識を約束している。
ニューロモルフィック・リカレントスパイキングニューラルネットワーク(RSNN)を用いたEMG信号に基づくジェスチャー認識の低消費電力高精度実証を行った。
我々のネットワークは,Roshambo EMGデータセット上で報告された最高の技術よりも53%の精度で,最先端の精度分類(90%)を実現している。
論文 参考訳(メタデータ) (2022-06-04T22:09:34Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Spatiotemporal Spike-Pattern Selectivity in Single Mixed-Signal Neurons
with Balanced Synapses [0.27998963147546135]
混合信号ニューロモルフィックプロセッサは推論と学習に使用できる。
ネットワーク層の実装に不均一なシナプス回路をいかに利用できるかを示す。
論文 参考訳(メタデータ) (2021-06-10T12:04:03Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。