Joint Power Control and Data Size Selection for Over-the-Air Computation
Aided Federated Learning
- URL: http://arxiv.org/abs/2308.09072v1
- Date: Thu, 17 Aug 2023 16:01:02 GMT
- Title: Joint Power Control and Data Size Selection for Over-the-Air Computation
Aided Federated Learning
- Authors: Xuming An, Rongfei Fan, Shiyuan Zuo, Han Hu, Hai Jiang, and Ning Zhang
- Abstract summary: Federated learning (FL) has emerged as an appealing machine learning approach to deal with massive raw data generated at multiple mobile devices.
We propose to jointly optimize the signal amplification factors at the base station and the mobile devices.
Our proposed method can greatly reduce the mean-squared error (MSE) and can help to improve the performance of FL.
- Score: 19.930700426682982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as an appealing machine learning approach
to deal with massive raw data generated at multiple mobile devices, {which
needs to aggregate the training model parameter of every mobile device at one
base station (BS) iteratively}. For parameter aggregating in FL, over-the-air
computation is a spectrum-efficient solution, which allows all mobile devices
to transmit their parameter-mapped signals concurrently to a BS. Due to
heterogeneous channel fading and noise, there exists difference between the
BS's received signal and its desired signal, measured as the mean-squared error
(MSE). To minimize the MSE, we propose to jointly optimize the signal
amplification factors at the BS and the mobile devices as well as the data size
(the number of data samples involved in local training) at every mobile device.
The formulated problem is challenging to solve due to its non-convexity. To
find the optimal solution, with some simplification on cost function and
variable replacement, which still preserves equivalence, we transform the
changed problem to be a bi-level problem equivalently. For the lower-level
problem, optimal solution is found by enumerating every candidate solution from
the Karush-Kuhn-Tucker (KKT) condition. For the upper-level problem, the
optimal solution is found by exploring its piecewise convexity. Numerical
results show that our proposed method can greatly reduce the MSE and can help
to improve the training performance of FL compared with benchmark methods.
Related papers
- Device Scheduling for Relay-assisted Over-the-Air Aggregation in
Federated Learning [9.735236606901038]
Federated learning (FL) leverages data distributed at the edge of the network to enable intelligent applications.
In this paper, we propose a relay-assisted FL framework, and investigate the device scheduling problem in relay-assisted FL systems.
arXiv Detail & Related papers (2023-12-15T03:04:39Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Over-the-Air Multi-Task Federated Learning Over MIMO Interference
Channel [17.362158131772127]
We study over-the-air multi-task FL (OA-MTFL) over the multiple-input multiple-output (MIMO) interference channel.
We propose a novel model aggregation method for the alignment of local gradients for different devices.
We show that due to the use of the new model aggregation method, device selection is no longer essential to our scheme.
arXiv Detail & Related papers (2021-12-27T10:42:04Z) - FedLGA: Towards System-Heterogeneity of Federated Learning via Local
Gradient Approximation [21.63719641718363]
We formalize the system-heterogeneous FL problem and propose a new algorithm, called FedLGA, which addresses this problem by bridging the divergence local model updates via epoch approximation.
The results of comprehensive experiments on multiple datasets show that FedLGA outperforms current FL benchmarks against the system-heterogeneity.
arXiv Detail & Related papers (2021-12-22T16:05:09Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications.
This paper proposes a wireless FL framework, which uploads local model parameters and computes global model parameters via wireless communications.
arXiv Detail & Related papers (2021-08-31T08:19:54Z) - Fast Federated Learning in the Presence of Arbitrary Device
Unavailability [26.368873771739715]
Federated Learning (FL) coordinates heterogeneous devices to collaboratively train a shared model while preserving user privacy.
One challenge arises when devices drop out of the training process beyond the central server.
We propose Im Federated Apatientaging (MIFA) to solve this problem.
arXiv Detail & Related papers (2021-06-08T07:46:31Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - Bayesian Federated Learning over Wireless Networks [87.37301441859925]
Federated learning is a privacy-preserving and distributed training method using heterogeneous data sets stored at local devices.
This paper presents an efficient modified BFL algorithm called scalableBFL (SBFL)
arXiv Detail & Related papers (2020-12-31T07:32:44Z) - Federated Learning via Intelligent Reflecting Surface [30.935389187215474]
Over-the-air computation algorithm (AirComp) based learning (FL) is capable of achieving fast model aggregation by exploiting the waveform superposition property of multiple access channels.
In this paper, we propose a two-step optimization framework to achieve fast yet reliable model aggregation for AirComp-based FL.
Simulation results will demonstrate that our proposed framework and the deployment of an IRS can achieve a lower training loss and higher FL prediction accuracy than the baseline algorithms.
arXiv Detail & Related papers (2020-11-10T11:29:57Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
The problem of delay computation for federated learning (FL) over wireless communication networks is investigated.
A bisection search algorithm is proposed to obtain the optimal solution.
Simulation results show that the proposed algorithm can reduce delay by up to 27.3% compared to conventional FL methods.
arXiv Detail & Related papers (2020-07-05T19:00:07Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.