JPEG Quantized Coefficient Recovery via DCT Domain Spatial-Frequential Transformer
- URL: http://arxiv.org/abs/2308.09110v2
- Date: Fri, 3 May 2024 09:34:22 GMT
- Title: JPEG Quantized Coefficient Recovery via DCT Domain Spatial-Frequential Transformer
- Authors: Mingyu Ouyang, Zhenzhong Chen,
- Abstract summary: We propose a DCT domain spatial-frequential Transformer, namely DCTransformer, for JPEG quantized coefficient recovery.
Our proposed DCTransformer outperforms the current state-of-the-art JPEG artifact removal techniques.
- Score: 45.134271969594614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: JPEG compression adopts the quantization of Discrete Cosine Transform (DCT) coefficients for effective bit-rate reduction, whilst the quantization could lead to a significant loss of important image details. Recovering compressed JPEG images in the frequency domain has recently garnered increasing interest, complementing the multitude of restoration techniques established in the pixel domain. However, existing DCT domain methods typically suffer from limited effectiveness in handling a wide range of compression quality factors or fall short in recovering sparse quantized coefficients and the components across different colorspaces. To address these challenges, we propose a DCT domain spatial-frequential Transformer, namely DCTransformer, for JPEG quantized coefficient recovery. Specifically, a dual-branch architecture is designed to capture both spatial and frequential correlations within the collocated DCT coefficients. Moreover, we incorporate the operation of quantization matrix embedding, which effectively allows our single model to handle a wide range of quality factors, and a luminance-chrominance alignment head that produces a unified feature map to align different-sized luminance and chrominance components. Our proposed DCTransformer outperforms the current state-of-the-art JPEG artifact removal techniques, as demonstrated by our extensive experiments.
Related papers
- COLI: A Hierarchical Efficient Compressor for Large Images [18.697445453003983]
Implicit Neural Representations (INRs) present a promising alternative by learning continuous mappings from spatial coordinates to pixel intensities for individual images.<n>We introduce COLI (Compressor for Large Images), a novel framework leveraging Neural Representations for Videos (NeRV)<n>We show that COLI consistently achieves competitive or superior PSNR and SSIM metrics at significantly reduced bits per pixel (bpp) while accelerating NeRV training by up to 4 times.
arXiv Detail & Related papers (2025-07-15T16:07:07Z) - Compressive Imaging Reconstruction via Tensor Decomposed Multi-Resolution Grid Encoding [50.54887630778593]
Compressive imaging (CI) reconstruction aims to recover high-dimensional images from low-dimensional measurements compressed.<n>Existing unsupervised representations may struggle to achieve a desired balance between representation ability and efficiency.<n>We propose Decomposed multi-resolution Grid encoding (GridTD), an unsupervised continuous representation framework for CI reconstruction.
arXiv Detail & Related papers (2025-07-10T12:36:20Z) - Uncover Treasures in DCT: Advancing JPEG Quality Enhancement by Exploiting Latent Correlations [38.07424900387283]
We propose an Advanced DCT-domain JPEG Quality Enhancement (AJQE) method that fully exploits two critical types of correlations within the DCT coefficients of JPEG images.<n>The AJQE method enables the adaptation of numerous well-established pixel-domain models to the DCT domain, achieving superior performance with reduced computational complexity.
arXiv Detail & Related papers (2025-06-26T12:08:18Z) - Pathology Image Compression with Pre-trained Autoencoders [52.208181380986524]
Whole Slide Images in digital histopathology pose significant storage, transmission, and computational efficiency challenges.
Standard compression methods, such as JPEG, reduce file sizes but fail to preserve fine-grained phenotypic details critical for downstream tasks.
In this work, we repurpose autoencoders (AEs) designed for Latent Diffusion Models as an efficient learned compression framework for pathology images.
arXiv Detail & Related papers (2025-03-14T17:01:17Z) - FD-LSCIC: Frequency Decomposition-based Learned Screen Content Image Compression [67.34466255300339]
This paper addresses three key challenges in SC image compression: learning compact latent features, adapting quantization step sizes, and the lack of large SC datasets.
We introduce an adaptive quantization module that learns scaled uniform noise for each frequency component, enabling flexible control over quantization granularity.
We construct a large SC image compression dataset (SDU-SCICD10K), which includes over 10,000 images spanning basic SC images, computer-rendered images, and mixed NS and SC images from both PC and mobile platforms.
arXiv Detail & Related papers (2025-02-21T03:15:16Z) - Quantization-free Lossy Image Compression Using Integer Matrix Factorization [8.009813033356478]
We introduce a variant of integer matrix factorization (IMF) to develop a novel quantization-free lossy image compression method.
IMF provides a low-rank representation of the image data as a product of two smaller factor matrices with bounded integer elements.
Our method consistently outperforms JPEG at low bit rates below 0.25 bits per pixel (bpp) and remains comparable at higher bit rates.
arXiv Detail & Related papers (2024-08-22T19:08:08Z) - JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients [17.437568540883106]
We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation.
Our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks.
arXiv Detail & Related papers (2024-04-03T03:28:04Z) - Neural Image Compression with Quantization Rectifier [7.097091519502871]
We develop a novel quantization (QR) method for image compression that leverages image feature correlation to mitigate the impact of quantization.
Our method designs a neural network architecture that predicts unquantized features from the quantized ones.
In evaluation, we integrate QR into state-of-the-art neural image codecs and compare enhanced models and baselines on the widely-used Kodak benchmark.
arXiv Detail & Related papers (2024-03-25T22:26:09Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
We propose a novel framework for learned lossless compression of JPEG images.
To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy.
An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients.
arXiv Detail & Related papers (2023-03-05T13:15:28Z) - Learned Lossless JPEG Transcoding via Joint Lossy and Residual
Compression [21.205453851414248]
We propose a new framework to recompress the compressed JPEG image in the DCT domain.
Our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
Our experiments on multiple datasets have demonstrated that our proposed framework can achieve about 21.49% bits saving in average based on JPEG compression.
arXiv Detail & Related papers (2022-08-24T17:12:00Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
We propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration.
By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST) for HSI reconstruction.
arXiv Detail & Related papers (2022-05-20T11:37:44Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.