Quantum Frame Relativity of Subsystems, Correlations and Thermodynamics
- URL: http://arxiv.org/abs/2308.09131v2
- Date: Wed, 20 Sep 2023 18:00:03 GMT
- Title: Quantum Frame Relativity of Subsystems, Correlations and Thermodynamics
- Authors: Philipp A. Hoehn, Isha Kotecha, Fabio M. Mele
- Abstract summary: Internal quantum reference frames (QRFs) partition a system in different ways into subsystems.
We show that subsystem relativity, in fact, also arises in special relativity with internal frames.
We focus on investigating when and how subsystem correlations and entropies, interactions and types of dynamics change under QRF transformations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It was recently noted that different internal quantum reference frames (QRFs)
partition a system in different ways into subsystems, much like different
inertial observers in special relativity decompose spacetime in different ways
into space and time. Here we expand on this QRF relativity of subsystems and
elucidate that it is the source of all novel QRF dependent effects, just like
the relativity of simultaneity is the origin of all characteristic special
relativistic phenomena. We show that subsystem relativity, in fact, also arises
in special relativity with internal frames and, by implying the relativity of
simultaneity, constitutes a generalisation of it. Physical consequences of the
QRF relativity of subsystems, which we explore here systematically, and the
relativity of simultaneity may thus be seen in similar light. We focus on
investigating when and how subsystem correlations and entropies, interactions
and types of dynamics (open vs. closed), as well as quantum thermodynamical
processes change under QRF transformations. We show that thermal equilibrium is
generically QRF relative and find that, remarkably, QRF transformations not
only can change a subsystem temperature, but even map positive into negative
temperature states. We further examine how non-equilibrium notions of heat and
work exchange, as well as entropy production and flow depend on the QRF. Along
the way, we develop the first study of how reduced subsystem states transform
under QRF changes. Focusing on physical insights, we restrict to ideal QRFs
associated with finite abelian groups. Besides being conducive to rigour, the
ensuing finite-dimensional setting is where quantum information-theoretic
quantities and quantum thermodynamics are best developed. We anticipate,
however, that our results extend qualitatively to more general groups and
frames, and even to subsystems in gauge theory and gravity. [abridged]
Related papers
- A new indeterminacy-based quantum theory [0.0]
I propose a novel interpretation of quantum theory, which I will call Environmental Determinacy-based (EnDQT)
Unlike theories such as spontaneous collapse theories, no modifications of the fundamental equations of quantum theory are required to establish when determinate values arise.
EnDQT may provide payoffs to other areas of physics and their foundations, such as cosmology.
arXiv Detail & Related papers (2023-10-06T04:05:38Z) - Quantifying High-Order Interdependencies in Entangled Quantum States [43.70611649100949]
We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
arXiv Detail & Related papers (2023-10-05T17:00:13Z) - Superpositions of thermalisation states in relativistic quantum field
theory [0.0]
In the quantum regime, a system may fail to thermalise when subject to quantum-controlled application of the same, single thermalisation channel.
We show how a probe that accelerates in a superposition of spatial translations interacts with incommensurate sets of field modes.
arXiv Detail & Related papers (2023-07-05T18:42:17Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Quantum Reference Frames for Lorentz Symmetry [0.0]
We introduce a reformulation of relativistic quantum mechanics independent of any notion of preferred temporal slicing.
We define transformations that switch between the perspectives of different relativistic QRFs.
We analyse two effects, superposition of time dilations and superposition of length contractions, that arise only if the reference frames exhibit both relativistic and quantum-mechanical features.
arXiv Detail & Related papers (2022-12-28T20:04:22Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Influence functional of many-body systems: temporal entanglement and
matrix-product state representation [0.0]
Feynman-Vernon influence functional (IF) was originally introduced to describe the effect of a quantum environment on the dynamics of an open quantum system.
We apply the IF approach to describe quantum many-body dynamics in isolated spin systems.
arXiv Detail & Related papers (2021-03-25T10:41:15Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - Spacetime Quantum Reference Frames and superpositions of proper times [0.0]
We introduce the notion of a spacetime QRF, associated to a quantum particle in spacetime.
We observe a quantum superposition of gravitational redshifts and a quantum superposition of special-relativistic time dilations in the QRF.
arXiv Detail & Related papers (2021-01-27T19:00:04Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.