論文の概要: Preference-conditioned Pixel-based AI Agent For Game Testing
- arxiv url: http://arxiv.org/abs/2308.09289v1
- Date: Fri, 18 Aug 2023 04:19:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 14:47:04.379629
- Title: Preference-conditioned Pixel-based AI Agent For Game Testing
- Title(参考訳): ゲームテストのための選好条件付きピクセルベースaiエージェント
- Authors: Sherif Abdelfattah, Adrian Brown, Pushi Zhang
- Abstract要約: 環境とのインタラクションによって学習するゲームテストAIエージェントは、これらの課題を軽減する可能性がある。
本稿では,ユーザの好みに応じて設定された環境を探索しながら,主に画素ベースの状態観測に依存するエージェント設計を提案する。
実AAAゲームにおける多くの側面に類似した複雑なオープンワールド環境において、調査対象とテスト実行品質に対して、我々のエージェントは、最先端の画素ベースのゲームテストエージェントよりも大幅に優れています。
- 参考スコア(独自算出の注目度): 1.5059676044537105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The game industry is challenged to cope with increasing growth in demand and
game complexity while maintaining acceptable quality standards for released
games. Classic approaches solely depending on human efforts for quality
assurance and game testing do not scale effectively in terms of time and cost.
Game-testing AI agents that learn by interaction with the environment have the
potential to mitigate these challenges with good scalability properties on time
and costs. However, most recent work in this direction depends on game state
information for the agent's state representation, which limits generalization
across different game scenarios. Moreover, game test engineers usually prefer
exploring a game in a specific style, such as exploring the golden path.
However, current game testing AI agents do not provide an explicit way to
satisfy such a preference. This paper addresses these limitations by proposing
an agent design that mainly depends on pixel-based state observations while
exploring the environment conditioned on a user's preference specified by
demonstration trajectories. In addition, we propose an imitation learning
method that couples self-supervised and supervised learning objectives to
enhance the quality of imitation behaviors. Our agent significantly outperforms
state-of-the-art pixel-based game testing agents over exploration coverage and
test execution quality when evaluated on a complex open-world environment
resembling many aspects of real AAA games.
- Abstract(参考訳): ゲーム産業は、リリースゲームの品質基準を許容しつつ、需要の増加とゲームの複雑さに対処することが課題となっている。
古典的なアプローチは、品質保証とゲームテストのための人間の努力にのみ依存し、時間とコストの面で効果的にスケールしない。
環境とのインタラクションによって学習するゲームテストAIエージェントは、これらの課題を時間とコストで優れたスケーラビリティ特性で軽減する可能性がある。
しかし、この方向の最近の作業は、異なるゲームシナリオの一般化を制限するエージェントの状態表現のためのゲーム状態情報に依存する。
さらに、ゲームテストエンジニアは通常、ゴールデンパスを探索するなど、特定のスタイルでゲームを探索することを好む。
しかし、現在のゲームテストAIエージェントは、そのような好みを満たす明確な方法を提供していない。
本稿では,実演軌跡によって規定されたユーザの嗜好に基づく環境を探索しながら,主に画素ベースの状態観察に依存するエージェント設計を提案する。
さらに,模倣行動の質を高めるために,自己指導的かつ指導的学習目標を結合する模倣学習手法を提案する。
本エージェントは,実際のaaaゲームに類似した複雑なオープンワールド環境において,探索カバレッジやテスト実行品質よりも,最先端のピクセルベースのゲームテストエージェントを著しく上回っている。
関連論文リスト
- Toward Human-AI Alignment in Large-Scale Multi-Player Games [24.784173202415687]
我々はXboxのBleeding Edge(100K+ゲーム)から広範囲にわたる人間のゲームプレイデータを解析する。
人間のプレイヤーは、戦闘飛行や探索飛行行動において多様性を示す一方で、AIプレイヤーは均一性に向かう傾向にある。
これらの大きな違いは、ヒューマンアラインアプリケーションにおけるAIの解釈可能な評価、設計、統合の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-05T22:55:33Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
ニューラルビデオゲームシミュレータのためのPGM(Promptable Game Model)を提案する。
ユーザーは高レベルのアクションシーケンスと低レベルのアクションシーケンスでゲームを実行することができる。
私たちのPGMは、エージェントの目標をプロンプトの形で指定することで、ディレクターのモードをアンロックします。
提案手法は,既存のニューラルビデオゲームシミュレータのレンダリング品質を著しく上回り,現在の最先端の能力を超えたアプリケーションをアンロックする。
論文 参考訳(メタデータ) (2023-03-23T17:43:17Z) - Generative Personas That Behave and Experience Like Humans [3.611888922173257]
生成AIエージェントは、ルール、報酬、または人間のデモンストレーションとして表される特定の演奏行動の模倣を試みる。
我々は、行動手続き的ペルソナの概念をプレイヤー体験に適応させるよう拡張し、プレイヤーが人間のように行動し、経験できる生成エージェントを調べる。
その結果, 生成したエージェントは, 模倣を意図した人物のプレイスタイルや経験的反応を呈することが示唆された。
論文 参考訳(メタデータ) (2022-08-26T12:04:53Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
Curiosity-Conditioned Proximal Trajectories (CCPT)法は、好奇心と模倣学習を組み合わせてエージェントを訓練して探索する。
CCPTが複雑な環境を探索し、ゲームプレイの問題を発見し、その過程におけるデザインの監視を行い、それらをゲームデザイナーに直接認識し、強調する方法について説明する。
論文 参考訳(メタデータ) (2022-02-21T09:08:33Z) - Towards Objective Metrics for Procedurally Generated Video Game Levels [2.320417845168326]
シミュレーションに基づく評価指標を2つ導入し, 生成レベルの多様性と難易度を測定した。
我々の多様性指標は、現在の方法よりも、レベルサイズや表現の変化に対して堅牢であることを示す。
難易度基準は、テスト済みのドメインの1つで既存の難易度推定と相関するが、他のドメインではいくつかの課題に直面している。
論文 参考訳(メタデータ) (2022-01-25T14:13:50Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
強化学習(Reinforcement Learning, RL)は、目標指向のポリシーを学習するためのフレームワークである。
本稿では,RLエージェントが経験した驚きの量と競合する2つのポリシーを相殺する対戦ゲームに基づく,新しい教師なしRL手法を提案する。
本手法は, 明確な相転移を示すことによって, 複雑なスキルの出現につながることを示す。
論文 参考訳(メタデータ) (2021-07-12T17:58:40Z) - Rinascimento: searching the behaviour space of Splendor [0.0]
本研究の目的は,ゲーム内の行動空間(BSpace)を一般手法を用いてマッピングすることである。
特に、イベント値関数の使用は、古典的なスコアベースの報酬信号に基づくエージェントと比較して、BSpaceのカバレッジが著しく改善されている。
論文 参考訳(メタデータ) (2021-06-15T18:46:57Z) - An Empirical Study on the Generalization Power of Neural Representations
Learned via Visual Guessing Games [79.23847247132345]
本研究は,視覚質問応答(VQA)のような新しいNLP下流タスクにおいて,後から実行を依頼されたとき,人工エージェントが推測ゲームでどの程度の利益を得ることができるかを検討する。
提案手法は,1) エージェントがうまく推理ゲームを模倣することを学習する教師あり学習シナリオ,2) エージェントが単独でプレイする新しい方法,すなわち,反復経験学習(SPIEL)によるセルフプレイ(Self-play)を提案する。
論文 参考訳(メタデータ) (2021-01-31T10:30:48Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
例えばRoguelikesのようなターンベースの戦略ゲームは、Deep Reinforcement Learning(DRL)にユニークな課題を提示する。
複雑なカテゴリ状態空間をより適切に処理し、設計決定によって強制的に再訓練する必要性を緩和する2つのネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-07T08:47:25Z) - Navigating the Landscape of Multiplayer Games [20.483315340460127]
大規模ゲームの応答グラフにネットワーク測度を適用することで,ゲームのランドスケープを創出できることを示す。
本研究は, 標準ゲームから複雑な経験ゲームまで, 訓練されたエージェント同士のパフォーマンスを計測する領域における知見について述べる。
論文 参考訳(メタデータ) (2020-05-04T16:58:17Z) - Never Give Up: Learning Directed Exploration Strategies [63.19616370038824]
そこで我々は,多岐にわたる探索政策を学習し,ハード・サーベイ・ゲームを解決するための強化学習エージェントを提案する。
エージェントの最近の経験に基づいて,k-アネレスト隣人を用いたエピソード記憶に基づく本質的な報酬を構築し,探索政策を訓練する。
自己教師付き逆動力学モデルを用いて、近くのルックアップの埋め込みを訓練し、エージェントが制御できる新しい信号をバイアスする。
論文 参考訳(メタデータ) (2020-02-14T13:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。