Cross-city Few-Shot Traffic Forecasting via Traffic Pattern Bank
- URL: http://arxiv.org/abs/2308.09727v1
- Date: Thu, 17 Aug 2023 13:29:57 GMT
- Title: Cross-city Few-Shot Traffic Forecasting via Traffic Pattern Bank
- Authors: Zhanyu Liu, Guanjie Zheng, Yanwei Yu
- Abstract summary: We propose a cross-city few-shot traffic forecasting framework via Traffic Pattern Bank (TPB)
TPB utilizes a pre-trained traffic patch encoder to project raw traffic data from data-rich cities into high-dimensional space.
An adjacency matrix is constructed to guide a downstream spatial-temporal model in forecasting future traffic.
- Score: 15.123457772023238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic forecasting is a critical service in Intelligent Transportation
Systems (ITS). Utilizing deep models to tackle this task relies heavily on data
from traffic sensors or vehicle devices, while some cities might lack device
support and thus have few available data. So, it is necessary to learn from
data-rich cities and transfer the knowledge to data-scarce cities in order to
improve the performance of traffic forecasting. To address this problem, we
propose a cross-city few-shot traffic forecasting framework via Traffic Pattern
Bank (TPB) due to that the traffic patterns are similar across cities. TPB
utilizes a pre-trained traffic patch encoder to project raw traffic data from
data-rich cities into high-dimensional space, from which a traffic pattern bank
is generated through clustering. Then, the traffic data of the data-scarce city
could query the traffic pattern bank and explicit relations between them are
constructed. The metaknowledge is aggregated based on these relations and an
adjacency matrix is constructed to guide a downstream spatial-temporal model in
forecasting future traffic. The frequently used meta-training framework Reptile
is adapted to find a better initial parameter for the learnable modules.
Experiments on real-world traffic datasets show that TPB outperforms existing
methods and demonstrates the effectiveness of our approach in cross-city
few-shot traffic forecasting.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
Traditional traffic prediction methods rely on historical traffic data to predict traffic trends.
In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation.
We propose ChatTraffic, the first diffusion model for text-to-traffic generation.
arXiv Detail & Related papers (2024-03-08T04:19:56Z) - Multi-scale Traffic Pattern Bank for Cross-city Few-shot Traffic
Forecasting [15.123457772023238]
We propose a solution for the cross-city few-shot traffic forecasting problem called Multi-scale Traffic Pattern Bank.
The framework employs advanced clustering techniques to systematically generate a multi-scale traffic pattern bank.
Empirical assessments conducted on real-world traffic datasets affirm the superior performance of MTPB.
arXiv Detail & Related papers (2024-02-01T07:33:31Z) - MA2GCN: Multi Adjacency relationship Attention Graph Convolutional
Networks for Traffic Prediction using Trajectory data [1.147374308875151]
This paper proposes a new traffic congestion prediction model - Multi Adjacency relationship Attention Graph Convolutional Networks(MA2GCN)
It transformed vehicle trajectory data into graph structured data in grid form, and proposed a vehicle entry and exit matrix based on the mobility between different grids.
Compared with multiple baselines, our model achieved the best performance on Shanghai taxi GPS trajectory dataset.
arXiv Detail & Related papers (2024-01-16T14:22:44Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
We propose an improved traffic prediction method based on graph convolution deep learning algorithms.
We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns.
arXiv Detail & Related papers (2023-08-20T14:31:55Z) - Traffic Prediction with Transfer Learning: A Mutual Information-based
Approach [11.444576186559487]
We propose TrafficTL, a cross-city traffic prediction approach that uses big data from other cities to aid data-scarce cities in traffic prediction.
TrafficTL is evaluated by comprehensive case studies on three real-world datasets and outperforms the state-of-the-art baseline by around 8 to 25 percent.
arXiv Detail & Related papers (2023-03-13T15:27:07Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.