Multi-scale Traffic Pattern Bank for Cross-city Few-shot Traffic
Forecasting
- URL: http://arxiv.org/abs/2402.00397v2
- Date: Mon, 26 Feb 2024 12:55:02 GMT
- Title: Multi-scale Traffic Pattern Bank for Cross-city Few-shot Traffic
Forecasting
- Authors: Zhanyu Liu, Guanjie Zheng, Yanwei Yu
- Abstract summary: We propose a solution for the cross-city few-shot traffic forecasting problem called Multi-scale Traffic Pattern Bank.
The framework employs advanced clustering techniques to systematically generate a multi-scale traffic pattern bank.
Empirical assessments conducted on real-world traffic datasets affirm the superior performance of MTPB.
- Score: 15.123457772023238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic forecasting is crucial for intelligent transportation systems (ITS),
aiding in efficient resource allocation and effective traffic control. However,
its effectiveness often relies heavily on abundant traffic data, while many
cities lack sufficient data due to limited device support, posing a significant
challenge for traffic forecasting. Recognizing this challenge, we have made a
noteworthy observation: traffic patterns exhibit similarities across diverse
cities. Building on this key insight, we propose a solution for the cross-city
few-shot traffic forecasting problem called Multi-scale Traffic Pattern Bank
(MTPB). Primarily, MTPB initiates its learning process by leveraging data-rich
source cities, effectively acquiring comprehensive traffic knowledge through a
spatial-temporal-aware pre-training process. Subsequently, the framework
employs advanced clustering techniques to systematically generate a multi-scale
traffic pattern bank derived from the learned knowledge. Next, the traffic data
of the data-scarce target city could query the traffic pattern bank,
facilitating the aggregation of meta-knowledge. This meta-knowledge, in turn,
assumes a pivotal role as a robust guide in subsequent processes involving
graph reconstruction and forecasting. Empirical assessments conducted on
real-world traffic datasets affirm the superior performance of MTPB, surpassing
existing methods across various categories and exhibiting numerous attributes
conducive to the advancement of cross-city few-shot forecasting methodologies.
The code is available in https://github.com/zhyliu00/MTPB.
Related papers
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - TrafficGPT: Towards Multi-Scale Traffic Analysis and Generation with Spatial-Temporal Agent Framework [3.947797359736224]
We have designed a multi-scale traffic generation system, TrafficGPT, using three AI agents to process multi-scale traffic data.
TrafficGPT consists of three essential AI agents: 1) a text-to-demand agent to interact with users and extract prediction tasks through texts; 2) a traffic prediction agent that leverages multi-scale traffic data to generate temporal features and similarity; and 3) a suggestion and visualization agent that uses the prediction results to generate suggestions and visualizations.
arXiv Detail & Related papers (2024-05-08T07:48:40Z) - Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
We propose an innovative solution that merges Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) architecture to enhance the prediction of traffic flow dynamics.
A key revelation of our research is the feasibility of sampling training data for large traffic systems from simulations conducted on smaller traffic systems.
arXiv Detail & Related papers (2024-03-27T15:57:42Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - TrafPS: A Shapley-based Visual Analytics Approach to Interpret Traffic [39.8945062366245]
TrafPS is a visual analytics approach for interpreting traffic prediction outcomes to support decision-making in traffic management and urban planning.
Based on the task requirement from the domain experts, we employ an interactive visual interface for multi-aspect exploration and analysis of significant flow patterns.
Two real-world case studies demonstrate the effectiveness of TrafPS in identifying key routes and decision-making support for urban planning.
arXiv Detail & Related papers (2024-03-07T01:00:55Z) - Cross-city Few-Shot Traffic Forecasting via Traffic Pattern Bank [15.123457772023238]
We propose a cross-city few-shot traffic forecasting framework via Traffic Pattern Bank (TPB)
TPB utilizes a pre-trained traffic patch encoder to project raw traffic data from data-rich cities into high-dimensional space.
An adjacency matrix is constructed to guide a downstream spatial-temporal model in forecasting future traffic.
arXiv Detail & Related papers (2023-08-17T13:29:57Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - Traffic Prediction with Transfer Learning: A Mutual Information-based
Approach [11.444576186559487]
We propose TrafficTL, a cross-city traffic prediction approach that uses big data from other cities to aid data-scarce cities in traffic prediction.
TrafficTL is evaluated by comprehensive case studies on three real-world datasets and outperforms the state-of-the-art baseline by around 8 to 25 percent.
arXiv Detail & Related papers (2023-03-13T15:27:07Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.