Time Series Predictions in Unmonitored Sites: A Survey of Machine Learning Techniques in Water Resources
- URL: http://arxiv.org/abs/2308.09766v3
- Date: Wed, 14 Aug 2024 17:20:19 GMT
- Title: Time Series Predictions in Unmonitored Sites: A Survey of Machine Learning Techniques in Water Resources
- Authors: Jared D. Willard, Charuleka Varadharajan, Xiaowei Jia, Vipin Kumar,
- Abstract summary: Prediction of dynamic environmental variables in unmonitored sites remains a long-standing challenge for water resources science.
Modern machine learning methods increasingly outperform their process-based and empirical model counterparts for hydrologic time series prediction.
We review relevant state-of-the art applications of machine learning for streamflow, water quality, and other water resources prediction.
- Score: 10.307058787085094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction of dynamic environmental variables in unmonitored sites remains a long-standing challenge for water resources science. The majority of the world's freshwater resources have inadequate monitoring of critical environmental variables needed for management. Yet, the need to have widespread predictions of hydrological variables such as river flow and water quality has become increasingly urgent due to climate and land use change over the past decades, and their associated impacts on water resources. Modern machine learning methods increasingly outperform their process-based and empirical model counterparts for hydrologic time series prediction with their ability to extract information from large, diverse data sets. We review relevant state-of-the art applications of machine learning for streamflow, water quality, and other water resources prediction and discuss opportunities to improve the use of machine learning with emerging methods for incorporating watershed characteristics into deep learning models, transfer learning, and incorporating process knowledge into machine learning models. The analysis here suggests most prior efforts have been focused on deep learning learning frameworks built on many sites for predictions at daily time scales in the United States, but that comparisons between different classes of machine learning methods are few and inadequate. We identify several open questions for time series predictions in unmonitored sites that include incorporating dynamic inputs and site characteristics, mechanistic understanding and spatial context, and explainable AI techniques in modern machine learning frameworks.
Related papers
- Challenges, Methods, Data -- a Survey of Machine Learning in Water Distribution Networks [5.185604886838128]
This work presents the main tasks in water distribution networks and discusses how they relate to machine learning.
It analyses how the particularities of the domain pose challenges to and can be leveraged by machine learning approaches.
arXiv Detail & Related papers (2024-10-16T11:21:07Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Evaluation of deep learning models for Australian climate extremes: prediction of streamflow and floods [0.17999333451993949]
In recent years, climate extremes such as floods have created significant environmental and economic hazards for Australia.
Deep learning methods have been promising for predicting small to medium-sized climate extreme events over a short time horizon.
We present an ensemble-based machine learning approach that addresses large-scale extreme flooding challenges.
arXiv Detail & Related papers (2024-07-20T23:45:04Z) - Beyond Tides and Time: Machine Learning Triumph in Water Quality [0.0]
This study aims to establish a robust predictive pipeline to both data science experts and those without domain specific knowledge.
Our research aims to establish a robust predictive pipeline to both data science experts and those without domain specific knowledge.
arXiv Detail & Related papers (2023-09-29T03:33:53Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - A Graph-Based Modeling Framework for Tracing Hydrological Pollutant
Transport in Surface Waters [0.0]
We present a graph modeling framework for understanding pollutant transport and fate across waterbodies, rivers, and watersheds.
The graph representation provides an intuitive approach for capturing connectivity and for identifying upstream pollutant sources.
Our tool ultimately seeks to help stakeholders design effective pollution prevention/mitigation practices.
arXiv Detail & Related papers (2023-02-10T00:30:38Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Physics Guided Machine Learning Methods for Hydrology [21.410993515618895]
We propose an LSTM based deep learning architecture that is coupled with SWAT (Soil and Water Assessment Tool)
The efficacy of the approach is being analyzed on several small catchments located in the South Branch of the Root River Watershed in southeast Minnesota.
arXiv Detail & Related papers (2020-12-02T19:17:19Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
We study a statistical and machine learning framework for the prediction of water pipe failures.
We use a dataset containing the failure records of all pipes within the water distribution network in Barcelona, Spain.
The results shed light on the effect of important risk factors, such as pipe geometry, age, material, and soil cover, among others.
arXiv Detail & Related papers (2020-07-02T19:08:36Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.