Approaches for enhancing extrapolability in process-based and data-driven models in hydrology
- URL: http://arxiv.org/abs/2408.07071v1
- Date: Tue, 13 Aug 2024 17:59:24 GMT
- Title: Approaches for enhancing extrapolability in process-based and data-driven models in hydrology
- Authors: Haiyang Shi,
- Abstract summary: This paper reviews and compares methods for assessing and enhancing the extrapolability of process-based and data-driven hydrological models.
Key strategies include the use of leave-one-out cross-validation and similarity-based methods to evaluate model performance in ungauged regions.
Deep learning, transfer learning, and domain adaptation techniques are also promising in their potential to improve model predictions in data-sparse and extreme conditions.
- Score: 0.16735447464058464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of process-based and data-driven hydrological models is crucial in modern hydrological research, especially for predicting key water cycle variables such as runoff, evapotranspiration (ET), and soil moisture. These models provide a scientific basis for water resource management, flood forecasting, and ecological protection. Process-based models simulate the physical mechanisms of watershed hydrological processes, while data-driven models leverage large datasets and advanced machine learning algorithms. This paper reviewed and compared methods for assessing and enhancing the extrapolability of both model types, discussing their prospects and limitations. Key strategies include the use of leave-one-out cross-validation and similarity-based methods to evaluate model performance in ungauged regions. Deep learning, transfer learning, and domain adaptation techniques are also promising in their potential to improve model predictions in data-sparse and extreme conditions. Interdisciplinary collaboration and continuous algorithmic advancements are also important to strengthen the global applicability and reliability of hydrological models.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Methods to improve run time of hydrologic models: opportunities and challenges in the machine learning era [0.0]
The application of Machine Learning (ML) to hydrologic modeling is fledgling.
One of the key reasons to adopt ML algorithms over physics-based models is its computational efficiency advantage and flexibility to work with various data sets.
This paper covers the opportunities and challenges of adopting ML for hydrological modeling and subsequently how it can help to improve the simulation time of physics-based models and future works that should be addressed.
arXiv Detail & Related papers (2024-08-05T05:27:19Z) - Machine learning surrogates for efficient hydrologic modeling: Insights from stochastic simulations of managed aquifer recharge [0.0]
We propose a hybrid modeling workflow for process-based hydrologic models and machine learning surrogate models.
As a case study, we apply this workflow to simulations of variably saturated groundwater flow at a prospective managed aquifer recharge site.
Our results demonstrate that ML surrogate models can achieve under 10% mean absolute percentage error and yield order-of-magnitude runtime savings.
arXiv Detail & Related papers (2024-07-30T15:24:27Z) - Streamflow Prediction with Uncertainty Quantification for Water Management: A Constrained Reasoning and Learning Approach [27.984958596544278]
This paper studies a constrained reasoning and learning (CRL) approach where physical laws represented as logical constraints are integrated as a layer in the deep neural network.
To address small data setting, we develop a theoretically-grounded training approach to improve the generalization accuracy of deep models.
arXiv Detail & Related papers (2024-05-31T18:53:53Z) - Towards Biologically Plausible and Private Gene Expression Data
Generation [47.72947816788821]
Generative models trained with Differential Privacy (DP) are becoming increasingly prominent in the creation of synthetic data for downstream applications.
Existing literature, however, primarily focuses on basic benchmarking datasets and tends to report promising results only for elementary metrics and relatively simple data distributions.
We initiate a systematic analysis of how DP generative models perform in their natural application scenarios, specifically focusing on real-world gene expression data.
arXiv Detail & Related papers (2024-02-07T14:39:11Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning Generative Models for Lumped Rainfall-Runoff Modeling [3.69758875412828]
This study presents a novel generative modeling approach to rainfall-runoff modeling, focusing on the synthesis of realistic daily catchment runoff time series.
Unlike traditional process-based lumped hydrologic models, our approach uses a small number of latent variables to characterize runoff generation processes.
In this study, we trained the generative models using neural networks on data from over 3,000 global catchments and achieved prediction accuracies comparable to current deep learning models.
arXiv Detail & Related papers (2023-09-18T16:07:41Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Knowledge-Guided Dynamic Systems Modeling: A Case Study on Modeling
River Water Quality [8.110949636804774]
Modeling real-world phenomena is a focus of many science and engineering efforts, such as ecological modeling and financial forecasting.
Building an accurate model for complex and dynamic systems improves understanding of underlying processes and leads to resource efficiency.
At the opposite extreme, data-driven modeling learns a model directly from data, requiring extensive data and potentially generating overfitting.
We focus on an intermediate approach, model revision, in which prior knowledge and data are combined to achieve the best of both worlds.
arXiv Detail & Related papers (2021-03-01T06:31:38Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.