A Comparison of Adversarial Learning Techniques for Malware Detection
- URL: http://arxiv.org/abs/2308.09958v1
- Date: Sat, 19 Aug 2023 09:22:32 GMT
- Title: A Comparison of Adversarial Learning Techniques for Malware Detection
- Authors: Pavla Louth\'anov\'a, Matou\v{s} Koz\'ak, Martin Jure\v{c}ek, Mark
Stamp
- Abstract summary: We use gradient-based, evolutionary algorithm-based, and reinforcement-based methods to generate adversarial samples.
Experiments show that the Gym-malware generator, which uses a reinforcement learning approach, has the greatest practical potential.
- Score: 1.2289361708127875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has proven to be a useful tool for automated malware
detection, but machine learning models have also been shown to be vulnerable to
adversarial attacks. This article addresses the problem of generating
adversarial malware samples, specifically malicious Windows Portable Executable
files. We summarize and compare work that has focused on adversarial machine
learning for malware detection. We use gradient-based, evolutionary
algorithm-based, and reinforcement-based methods to generate adversarial
samples, and then test the generated samples against selected antivirus
products. We compare the selected methods in terms of accuracy and practical
applicability. The results show that applying optimized modifications to
previously detected malware can lead to incorrect classification of the file as
benign. It is also known that generated malware samples can be successfully
used against detection models other than those used to generate them and that
using combinations of generators can create new samples that evade detection.
Experiments show that the Gym-malware generator, which uses a reinforcement
learning approach, has the greatest practical potential. This generator
achieved an average sample generation time of 5.73 seconds and the highest
average evasion rate of 44.11%. Using the Gym-malware generator in combination
with itself improved the evasion rate to 58.35%.
Related papers
- Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
arXiv Detail & Related papers (2023-12-25T21:25:55Z) - Towards a Practical Defense against Adversarial Attacks on Deep
Learning-based Malware Detectors via Randomized Smoothing [3.736916304884177]
We propose a practical defense against adversarial malware examples inspired by randomized smoothing.
In our work, instead of employing Gaussian or Laplace noise when randomizing inputs, we propose a randomized ablation-based smoothing scheme.
We have empirically evaluated the proposed ablation-based model against various state-of-the-art evasion attacks on the BODMAS dataset.
arXiv Detail & Related papers (2023-08-17T10:30:25Z) - Creating Valid Adversarial Examples of Malware [4.817429789586127]
We present a generator of adversarial malware examples using reinforcement learning algorithms.
Using the PPO algorithm, we achieved an evasion rate of 53.84% against the gradient-boosted decision tree (GBDT) model.
random application of our functionality-preserving portable executable modifications successfully evades leading antivirus engines.
arXiv Detail & Related papers (2023-06-23T16:17:45Z) - FGAM:Fast Adversarial Malware Generation Method Based on Gradient Sign [16.16005518623829]
Adversarial attacks are to deceive the deep learning model by generating adversarial samples.
This paper proposes FGAM (Fast Generate Adversarial Malware), a method for fast generating adversarial malware.
It is experimentally verified that the success rate of the adversarial malware deception model generated by FGAM is increased by about 84% compared with existing methods.
arXiv Detail & Related papers (2023-05-22T06:58:34Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - A two-steps approach to improve the performance of Android malware
detectors [4.440024971751226]
We propose GUIDED RETRAINING, a supervised representation learning-based method that boosts the performance of a malware detector.
We validate our method on four state-of-the-art Android malware detection approaches using over 265k malware and benign apps.
Our method is generic and designed to enhance the classification performance on a binary classification task.
arXiv Detail & Related papers (2022-05-17T12:04:17Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA, an Adversarial Malware Detection model uses evolutionary optimization to create attack samples to make the network robust against evasion attacks.
By retraining the model with the evolved malware samples, its performance improves a significant margin.
arXiv Detail & Related papers (2020-02-09T09:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.