論文の概要: Towards Self-Adaptive Machine Learning-Enabled Systems Through QoS-Aware
Model Switching
- arxiv url: http://arxiv.org/abs/2308.09960v1
- Date: Sat, 19 Aug 2023 09:33:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 18:50:55.334467
- Title: Towards Self-Adaptive Machine Learning-Enabled Systems Through QoS-Aware
Model Switching
- Title(参考訳): qos対応モデルスイッチによる自己適応型機械学習システムの構築
- Authors: Shubham Kulkarni, Arya Marda, Karthik Vaidhyanathan
- Abstract要約: 本稿では,機械学習モデルバランサの概念を提案し,複数のモデルを用いてMLモデルに関連する不確実性を管理する。
AdaMLSは、この概念を活用し、従来のMAPE-Kループを拡張した新しい自己適応手法である。
予備的な結果は、AdaMLSが保証において、単純で単一の最先端モデルを上回ることを示唆している。
- 参考スコア(独自算出の注目度): 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML), particularly deep learning, has seen vast
advancements, leading to the rise of Machine Learning-Enabled Systems (MLS).
However, numerous software engineering challenges persist in propelling these
MLS into production, largely due to various run-time uncertainties that impact
the overall Quality of Service (QoS). These uncertainties emanate from ML
models, software components, and environmental factors. Self-adaptation
techniques present potential in managing run-time uncertainties, but their
application in MLS remains largely unexplored. As a solution, we propose the
concept of a Machine Learning Model Balancer, focusing on managing
uncertainties related to ML models by using multiple models. Subsequently, we
introduce AdaMLS, a novel self-adaptation approach that leverages this concept
and extends the traditional MAPE-K loop for continuous MLS adaptation. AdaMLS
employs lightweight unsupervised learning for dynamic model switching, thereby
ensuring consistent QoS. Through a self-adaptive object detection system
prototype, we demonstrate AdaMLS's effectiveness in balancing system and model
performance. Preliminary results suggest AdaMLS surpasses naive and single
state-of-the-art models in QoS guarantees, heralding the advancement towards
self-adaptive MLS with optimal QoS in dynamic environments.
- Abstract(参考訳): 機械学習(ML)、特にディープラーニングは、大きな進歩を経験し、MLS(Machine Learning-Enabled Systems)の台頭につながった。
しかしながら、多くのソフトウェアエンジニアリングの課題が、これらのMLSを本番環境に推し進めることに続き、その大部分は、サービス品質(QoS)全体に影響を及ぼす様々な実行時の不確実性のためである。
これらの不確実性は、MLモデル、ソフトウェアコンポーネント、環境要因から生じる。
自己適応技術は実行時の不確実性を管理する可能性を秘めているが、MLSにおけるそれらの応用はいまだに未解明である。
そこで本研究では,機械学習モデルバランサの概念を提案し,複数のモデルを用いてMLモデルに関連する不確実性を管理する。
次に、この概念を活用し、従来のMAPE-Kループを拡張した新しい自己適応手法であるAdaMLSを紹介する。
AdaMLSは、動的モデルの切り替えに軽量な教師なし学習を採用し、一貫したQoSを保証する。
自己適応型オブジェクト検出システムのプロトタイプを通じて,AdaMLSのバランスシステムとモデル性能における有効性を示す。
予備的な結果から、AdaMLSはQoS保証において単純かつ単一の最先端モデルを超え、動的環境における最適なQoSによる自己適応型MLSへの進歩を示唆している。
関連論文リスト
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
実世界の機械学習システムは、基礎となるデータ生成プロセスの分散シフトによって、モデルの性能劣化に遭遇することが多い。
概念のドリフト適応のような既存のシフトへのアプローチは、その理性に依存しない性質によって制限される。
我々はこれらの制限を克服するために自己修復機械学習(SHML)を提案する。
論文 参考訳(メタデータ) (2024-10-31T20:05:51Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Quantum Machine Learning Architecture Search via Deep Reinforcement Learning [8.546707309430593]
教師付き学習タスクに適した有能なQMLモデルアーキテクチャを探索するために、深層強化学習を導入する。
我々の手法は、所定のアンザッツを使わずにQMLモデルの発見を容易にするポリシーを考案するために、RLエージェントを訓練することを含む。
提案手法は,ゲート深さを最小化しながら高い分類精度を達成できるVQCアーキテクチャの同定に成功している。
論文 参考訳(メタデータ) (2024-07-29T16:20:51Z) - Reimagining Self-Adaptation in the Age of Large Language Models [0.9999629695552195]
本稿では、ジェネレーティブAI(GenAI)を用いて、アーキテクチャ適応の有効性と効率を高めるためのビジョンを提案する。
そこで我々は,Large Language Models (LLMs) が文脈依存適応戦略を自律的に生成できることを提案する。
我々の研究結果は、GenAIがソフトウェアシステムの動的適応性とレジリエンスを改善する大きな可能性を持っていることを示唆している。
論文 参考訳(メタデータ) (2024-04-15T15:30:12Z) - SWITCH: An Exemplar for Evaluating Self-Adaptive ML-Enabled Systems [1.2277343096128712]
QoS(Quality of Service)の維持にはMLS(Machine Learning-Enabled Systems)が不可欠である
機械学習モデルバランサ(Machine Learning Model Balancer)は、動的MLモデルの切り替えを容易にすることで、これらの不確実性に対処する概念である。
本稿では,このようなシステムにおける自己適応能力を高めるために開発されたSWITCHを紹介する。
論文 参考訳(メタデータ) (2024-02-09T11:56:44Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Quality Assurance Challenges for Machine Learning Software Applications
During Software Development Life Cycle Phases [1.4213973379473654]
本稿では機械学習(ML)モデルの品質保証に関する文献の詳細なレビューを行う。
ソフトウェア開発ライフサイクル(SDLC)の異なる段階にまたがる様々なML導入課題をマッピングすることで、MLSA品質保証問題の分類法を開発する。
このマッピングは、MLモデルの採用が重要であると考えられるMLSAの品質保証の取り組みを優先するのに役立ちます。
論文 参考訳(メタデータ) (2021-05-03T22:29:23Z) - Robusta: Robust AutoML for Feature Selection via Reinforcement Learning [24.24652530951966]
強化学習(RL)に基づく初の堅牢なAutoMLフレームワークRobostaを提案します。
このフレームワークは,良性サンプルの競争精度を維持しつつ,モデルロバスト性を最大22%向上させることができることを示す。
論文 参考訳(メタデータ) (2021-01-15T03:12:29Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。