論文の概要: Adaptive pruning-based Newton's method for distributed learning
- arxiv url: http://arxiv.org/abs/2308.10154v4
- Date: Tue, 17 Dec 2024 06:45:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:54:48.643209
- Title: Adaptive pruning-based Newton's method for distributed learning
- Title(参考訳): 適応型プルーニングに基づく分散学習のためのニュートン法
- Authors: Shuzhen Chen, Yuan Yuan, Youming Tao, Tianzhu Wang, Zhipeng Cai, Dongxiao Yu,
- Abstract要約: 本稿では,分散適応ニュートン学習(textttDANL)という,新規で効率的なアルゴリズムを提案する。
textttDANLは、利用可能なリソースに効率よく適応し、高い効率を維持しながら、線形収束率を達成する。
実験により、textttDANLは、効率的な通信と異なるデータセット間の強い性能で線形収束を実現することが示された。
- 参考スコア(独自算出の注目度): 14.885388389215587
- License:
- Abstract: Newton's method leverages curvature information to boost performance, and thus outperforms first-order methods for distributed learning problems. However, Newton's method is not practical in large-scale and heterogeneous learning environments, due to obstacles such as high computation and communication costs of the Hessian matrix, sub-model diversity, staleness of training, and data heterogeneity. To overcome these obstacles, this paper presents a novel and efficient algorithm named Distributed Adaptive Newton Learning (\texttt{DANL}), which solves the drawbacks of Newton's method by using a simple Hessian initialization and adaptive allocation of training regions. The algorithm exhibits remarkable convergence properties, which are rigorously examined under standard assumptions in stochastic optimization. The theoretical analysis proves that \texttt{DANL} attains a linear convergence rate while efficiently adapting to available resources and keeping high efficiency. Furthermore, \texttt{DANL} shows notable independence from the condition number of the problem and removes the necessity for complex parameter tuning. Experiments demonstrate that \texttt{DANL} achieves linear convergence with efficient communication and strong performance across different datasets.
- Abstract(参考訳): ニュートン法は曲率情報を利用して性能を向上し,分散学習問題に対する一階法よりも優れる。
しかし、ニュートンの手法は、ヘッセン行列の高計算や通信コスト、サブモデル多様性、トレーニングの安定性、データ不均一性などの障害のため、大規模で不均一な学習環境では実用的ではない。
これらの障害を克服するために, 単純ヘッセン初期化と訓練領域の適応配置を用いてニュートン法の欠点を解決する分散適応ニュートン学習(\texttt{DANL})という, 新規で効率的なアルゴリズムを提案する。
このアルゴリズムは顕著な収束特性を示し、確率最適化の標準的な仮定の下で厳密に検討されている。
この理論解析は, 利用可能な資源に効率よく適応し, 高効率を維持しつつ, 線形収束率を達成することを証明している。
さらに、 \texttt{DANL} は問題の条件数から顕著な独立性を示し、複雑なパラメータチューニングの必要性を排除している。
実験により、 texttt{DANL} は、効率的な通信と異なるデータセット間の強い性能で線形収束を達成することを示した。
関連論文リスト
- Representation and Regression Problems in Neural Networks: Relaxation, Generalization, and Numerics [5.915970073098098]
浅層ニューラルネットワーク(NN)の訓練に伴う3つの非次元最適化問題に対処する。
我々はこれらの問題と表現を凸化し、不在緩和ギャップを証明するために代表者勾配を適用した。
我々はこれらの境界に対する鍵パラメータの影響を分析し、最適な選択を提案する。
高次元データセットに対して,勾配降下と組み合わせて効率的な解を求めるスペーシフィケーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-02T15:40:29Z) - Adaptive debiased SGD in high-dimensional GLMs with streaming data [4.704144189806667]
我々は、高次元一般化線形モデルにおいて、オンライン推論に新しいアプローチを導入する。
本手法はシングルパスモードで動作し,時間と空間の複雑さを著しく低減する。
提案手法は,ADL (Approximated Debiased Lasso) と呼ばれ,有界な個人確率条件の必要性を緩和するだけでなく,数値性能も著しく向上することを示した。
論文 参考訳(メタデータ) (2024-05-28T15:36:48Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - On Hypothesis Transfer Learning of Functional Linear Models [8.557392136621894]
再生カーネル空間(RKHS)フレームワークを用いて,関数線形回帰(FLR)のための伝達学習(TL)について検討する。
我々は、RKHS距離を用いてタスク間の類似度を測定し、RKHSの特性に関連付けられた情報の転送を行う。
2つのアルゴリズムが提案され、1つは正のソースが分かっているときに転送を行い、もう1つはアグリゲーションを利用してソースに関する事前情報なしでロバストな転送を行う。
論文 参考訳(メタデータ) (2022-06-09T04:50:16Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
複雑度が状態数に依存しない意思決定プロセスにおける強化学習のための効率的なアルゴリズムについて検討する。
このような弱い学習手法の精度を向上させることができる効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-08-22T16:00:45Z) - Distributed Second Order Methods with Fast Rates and Compressed
Communication [6.069611493148631]
分散最適化のための通信効率の高い第2次手法を複数開発する。
我々は大域的な部分線型および線形収束率と高速超線形速度を証明した。
結果は実データセットでの実験結果と共にサポートされます。
論文 参考訳(メタデータ) (2021-02-14T14:06:45Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。