論文の概要: MacFormer: Map-Agent Coupled Transformer for Real-time and Robust
Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2308.10280v2
- Date: Thu, 31 Aug 2023 07:23:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 19:20:55.735570
- Title: MacFormer: Map-Agent Coupled Transformer for Real-time and Robust
Trajectory Prediction
- Title(参考訳): macformer:リアルタイムかつロバストな軌道予測のためのマップエージェント結合トランス
- Authors: Chen Feng, Hangning Zhou, Huadong Lin, Zhigang Zhang, Ziyao Xu, Chi
Zhang, Boyu Zhou, Shaojie Shen
- Abstract要約: 実時間およびロバストな軌道予測のためのMap-Agent Coupled Transformer (MacFormer)を提案する。
本フレームワークは,共用マップと参照抽出器という,慎重に設計された2つのモジュールを通じて,マップ制約をネットワークに明示的に組み込む。
我々はArgoverse 1 と Argoverse 2 と nuScenes の実世界のベンチマークに対するアプローチを評価し、いずれも最先端のパフォーマンスを達成した。
- 参考スコア(独自算出の注目度): 26.231420111336565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the future behavior of agents is a fundamental task in autonomous
vehicle domains. Accurate prediction relies on comprehending the surrounding
map, which significantly regularizes agent behaviors. However, existing methods
have limitations in exploiting the map and exhibit a strong dependence on
historical trajectories, which yield unsatisfactory prediction performance and
robustness. Additionally, their heavy network architectures impede real-time
applications. To tackle these problems, we propose Map-Agent Coupled
Transformer (MacFormer) for real-time and robust trajectory prediction. Our
framework explicitly incorporates map constraints into the network via two
carefully designed modules named coupled map and reference extractor. A novel
multi-task optimization strategy (MTOS) is presented to enhance learning of
topology and rule constraints. We also devise bilateral query scheme in context
fusion for a more efficient and lightweight network. We evaluated our approach
on Argoverse 1, Argoverse 2, and nuScenes real-world benchmarks, where it all
achieved state-of-the-art performance with the lowest inference latency and
smallest model size. Experiments also demonstrate that our framework is
resilient to imperfect tracklet inputs. Furthermore, we show that by combining
with our proposed strategies, classical models outperform their baselines,
further validating the versatility of our framework.
- Abstract(参考訳): 自律走行車分野におけるエージェントの将来行動予測は基本的な課題である。
正確な予測は、エージェントの振る舞いを著しく規則化する周囲の地図の解釈に依存する。
しかし、既存の手法では地図の利用に限界があり、歴史的軌道に強く依存しており、不満足な予測性能と堅牢性をもたらす。
さらに、彼らの重いネットワークアーキテクチャはリアルタイムアプリケーションを妨げる。
これらの問題に対処するために,実時間およびロバストな軌道予測のためのMap-Agent Coupled Transformer (MacFormer)を提案する。
このフレームワークは,結合マップと参照抽出という2つの注意深く設計されたモジュールを通じて,ネットワークにマップ制約を明示的に組み込む。
トポロジとルール制約の学習を促進するために,新しいマルチタスク最適化戦略(MTOS)を提案する。
さらに,より効率的で軽量なネットワークを実現するために,コンテキスト融合によるバイラテラルクエリスキームを考案する。
argoverse 1, argoverse 2, nuscenes実世界のベンチマークにおける我々のアプローチを評価した。
実験により、我々のフレームワークはトラックレット入力に不完全であることを示す。
さらに,提案手法を組み合わせることで,古典モデルがベースラインを上回り,フレームワークの汎用性をさらに検証できることを示す。
関連論文リスト
- Self-Supervised State Space Model for Real-Time Traffic Accident Prediction Using eKAN Networks [18.385759762991896]
SSL-eKambaは、交通事故予測のための効率的な自己組織化フレームワークである。
一般化を促進するために,交通パターン表現を適応的に改善する2つの自己教師付き補助タスクを設計する。
2つの実世界のデータセットの実験では、SSL-eKambaは最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2024-09-09T14:25:51Z) - StreamMOTP: Streaming and Unified Framework for Joint 3D Multi-Object Tracking and Trajectory Prediction [22.29257945966914]
我々は3次元多目的追跡・軌道予測(StreamMOTP)のためのストリーミング統合フレームワークを提案する。
ストリーミング方式でモデルを構築し、メモリバンクを利用して、追跡対象の長期潜伏機能をより効果的に保存し、活用する。
また,予測トラジェクタの品質と一貫性を2ストリーム予測器で改善する。
論文 参考訳(メタデータ) (2024-06-28T11:35:35Z) - DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - Real-Time Motion Prediction via Heterogeneous Polyline Transformer with
Relative Pose Encoding [121.08841110022607]
既存のエージェント中心の手法は、公開ベンチマークで顕著な性能を示した。
K-nearest neighbor attention with relative pose encoding (KNARPE) は、トランスフォーマーがペアワイズ相対表現を使用できる新しいアテンション機構である。
エージェント間でコンテキストを共有し、変化しないコンテキストを再利用することで、私たちのアプローチはシーン中心のメソッドと同じくらい効率的になり、最先端のエージェント中心のメソッドと同等に実行されます。
論文 参考訳(メタデータ) (2023-10-19T17:59:01Z) - A Fast and Map-Free Model for Trajectory Prediction in Traffics [2.435517936694533]
本稿では,交通地図に依存しない効率的な軌道予測モデルを提案する。
注意機構、LSTM、グラフ畳み込みネットワーク、時間変換器を包括的に活用することにより、我々のモデルは全てのエージェントのリッチな動的および相互作用情報を学習することができる。
提案モデルでは,既存のマップフリー手法と比較して高い性能を達成し,Argoverseデータセット上のほとんどのマップベース最先端手法を超越する。
論文 参考訳(メタデータ) (2023-07-19T08:36:31Z) - GoRela: Go Relative for Viewpoint-Invariant Motion Forecasting [121.42898228997538]
精度や一般化を犠牲にすることなく、全てのエージェントとマップに対して効率的な共有符号化を提案する。
不均一空間グラフにおけるエージェントとマップ要素間の幾何学的関係を表現するために、ペアワイズ相対的な位置符号化を利用する。
我々のデコーダは視点非依存であり、レーングラフ上でエージェント目標を予測し、多様かつコンテキスト対応のマルチモーダル予測を可能にする。
論文 参考訳(メタデータ) (2022-11-04T16:10:50Z) - Trajectory Prediction with Graph-based Dual-scale Context Fusion [43.51107329748957]
本稿では,Dual Scale Predictorというグラフベースの軌道予測ネットワークを提案する。
静的および動的駆動コンテキストを階層的にエンコードする。
提案したデュアルスケールコンテキスト融合ネットワークにより、DSPは正確で人間らしいマルチモーダル軌道を生成することができる。
論文 参考訳(メタデータ) (2021-11-02T13:42:16Z) - Higher Performance Visual Tracking with Dual-Modal Localization [106.91097443275035]
Visual Object Tracking (VOT)は、堅牢性と正確性の両方に同期性を必要とする。
ONRによるロバストなローカリゼーション抑制器とOFCによるターゲットセンターへの正確なローカリゼーションにより、ターゲットローカリゼーションのためのデュアルモーダルフレームワークを提案します。
論文 参考訳(メタデータ) (2021-03-18T08:47:56Z) - Exploiting latent representation of sparse semantic layers for improved
short-term motion prediction with Capsule Networks [0.12183405753834559]
本稿では,HD(High-Definition)マップの小さな領域に対応するスパースなセマンティクス層の階層的表現を学習する文脈において,Capsule Networks(CapsNets)の利用を検討する。
CapsNetsに基づくアーキテクチャを使用することで、検出された画像内の特徴間の階層的関係を維持すると同時に、プール操作によってしばしば発生する空間データの損失を防ぐことができる。
本モデルでは,ネットワーク全体の規模を大幅に削減しつつ,予測に関する最近の研究よりも大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2021-03-02T11:13:43Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。