論文の概要: Large Language Models for Software Engineering: A Systematic Literature
Review
- arxiv url: http://arxiv.org/abs/2308.10620v1
- Date: Mon, 21 Aug 2023 10:37:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 13:58:24.081508
- Title: Large Language Models for Software Engineering: A Systematic Literature
Review
- Title(参考訳): ソフトウェア工学のための大規模言語モデル:体系的文献レビュー
- Authors: Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu
Luo, David Lo, John Grundy, Haoyu Wang
- Abstract要約: 大規模言語モデル(LLM)は、特にソフトウェア工学(SE)を含む多くの領域に大きな影響を与えている。
この体系的な文献レビューは、LLMとSEの交差点を深く掘り下げている。
我々は、2017年から2023年までの合計229の研究論文を収集し、分析し、4つの重要な研究質問(RQ)に答える。
- 参考スコア(独自算出の注目度): 35.260023199700306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have significantly impacted numerous domains,
notably including Software Engineering (SE). Nevertheless, a well-rounded
understanding of the application, effects, and possible limitations of LLMs
within SE is still in its early stages. To bridge this gap, our systematic
literature review takes a deep dive into the intersection of LLMs and SE, with
a particular focus on understanding how LLMs can be exploited in SE to optimize
processes and outcomes. Through a comprehensive review approach, we collect and
analyze a total of 229 research papers from 2017 to 2023 to answer four key
research questions (RQs). In RQ1, we categorize and provide a comparative
analysis of different LLMs that have been employed in SE tasks, laying out
their distinctive features and uses. For RQ2, we detail the methods involved in
data collection, preprocessing, and application in this realm, shedding light
on the critical role of robust, well-curated datasets for successful LLM
implementation. RQ3 allows us to examine the specific SE tasks where LLMs have
shown remarkable success, illuminating their practical contributions to the
field. Finally, RQ4 investigates the strategies employed to optimize and
evaluate the performance of LLMs in SE, as well as the common techniques
related to prompt optimization. Armed with insights drawn from addressing the
aforementioned RQs, we sketch a picture of the current state-of-the-art,
pinpointing trends, identifying gaps in existing research, and flagging
promising areas for future study.
- Abstract(参考訳): 大規模言語モデル(llm)は、ソフトウェア工学(se)を含む多くのドメインに大きな影響を与えてきた。
それでも、SE における LLM の応用、効果、および可能性の制限に関するよく知られた理解は、まだ初期段階にある。
このギャップを埋めるために、私たちの体系的な文献レビューでは、プロセスと成果を最適化するために、特にSEでLLMをどのように活用できるかを理解することに重点を置いて、LLMとSEの交差点を深く掘り下げています。
総合的なレビューアプローチを通じて、2017年から2023年までの合計229件の研究論文を収集し分析し、4つの重要な研究課題(RQ)に回答する。
RQ1では、SEタスクに採用されている異なるLLMの分類と比較分析を行い、それらの特徴と用途を概説する。
rq2では、この領域におけるデータ収集、前処理、およびアプリケーションに関連するメソッドを詳述し、llm実装を成功させるために、堅牢で十分に調整されたデータセットが果たす重要な役割を明らかにした。
RQ3では, LLMが顕著な成功を収めた特定のSEタスクについて検討し, 現場への実践的貢献を明記する。
最後に RQ4 では,SE における LLM の性能を最適化・評価するための戦略と,迅速な最適化に関する共通技術について検討している。
上記のrqsへの対応から得られた洞察を活かして、現在の最先端の図をスケッチし、トレンドを特定し、既存の研究におけるギャップを特定し、将来的な研究に有望な領域をフラグ付けします。
関連論文リスト
- Empirical Insights on Fine-Tuning Large Language Models for Question-Answering [50.12622877002846]
大規模言語モデル(LLM)は、大量のデータセットの事前トレーニングを通じて、広範囲な世界の知識を符号化する。
我々は,事前学習したLLMが記憶する知識の量に基づいて,教師付き微調整(SFT)データを分類した。
実験の結果,SFTの段階では60個のデータポイントが事前学習中に符号化された知識を活性化することができ,LLMがQAタスクを実行できることがわかった。
論文 参考訳(メタデータ) (2024-09-24T07:38:38Z) - Agents in Software Engineering: Survey, Landscape, and Vision [46.021478509599895]
大規模言語モデル(LLM)は目覚ましい成功を収め、下流の様々なタスクで広く使われてきた。
LLMとソフトウェア工学(SE)を組み合わせた多くの研究では、明示的にも暗黙的にもエージェントの概念が採用されている。
本稿では,知覚,記憶,行動の3つの重要なモジュールを含む,SE における LLM ベースのエージェントのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-13T17:55:58Z) - From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future [15.568939568441317]
本稿では,大規模言語モデル (LLM) と LLM をベースとしたソフトウェア工学エージェントの実践とソリューションについて検討する。
特に、要件エンジニアリング、コード生成、自律的な意思決定、ソフトウェア設計、テスト生成、ソフトウェアメンテナンスの6つの主要なトピックを要約します。
我々は、使用するモデルとベンチマークについて論じ、ソフトウェア工学におけるそれらの応用と有効性について包括的に分析する。
論文 参考訳(メタデータ) (2024-08-05T14:01:15Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
本稿では,セマンティック・オーバーラップ・サマリゼーション(SOS)タスクにおいて,Large Language Models (LLM) を包括的に評価する。
本稿では, ROUGE, BERTscore, SEM-F1$などの定評ある指標を, 2種類の代替物語のデータセット上で報告する。
論文 参考訳(メタデータ) (2024-02-26T20:33:50Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - A Survey on Large Language Models for Software Engineering [15.468484685849983]
大規模言語モデル(LLM)は、幅広いソフトウェア工学(SE)タスクを自動化するために使われる。
本稿では,LLMを基盤としたSEコミュニティにおける最先端の研究について概説する。
論文 参考訳(メタデータ) (2023-12-23T11:09:40Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Towards an Understanding of Large Language Models in Software Engineering Tasks [29.30433406449331]
大規模言語モデル(LLM)は、テキスト生成や推論タスクにおける驚くべきパフォーマンスのために、広く注目を集め、研究している。
コード生成などのソフトウェア工学タスクにおけるLLMの評価と最適化が研究の焦点となっている。
本稿では,LLMとソフトウェア工学を組み合わせた研究・製品について包括的に検討・検討する。
論文 参考訳(メタデータ) (2023-08-22T12:37:29Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。