Superfluid weight in the isolated band limit within the generalized random phase approximation
- URL: http://arxiv.org/abs/2308.10780v2
- Date: Fri, 17 May 2024 07:44:41 GMT
- Title: Superfluid weight in the isolated band limit within the generalized random phase approximation
- Authors: Minh Tam, Sebastiano Peotta,
- Abstract summary: The superfluid weight of a generic lattice model with attractive Hubbard interaction is computed analytically in the isolated band limit.
It is found that the relation obtained in [https://link.aps.org/doi103/PhysRevB.106.014518] between the superfluid weight in the flat band limit and the so-called minimal quantum metric is valid even at the level of the generalized random phase approximation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The superfluid weight of a generic lattice model with attractive Hubbard interaction is computed analytically in the isolated band limit within the generalized random phase approximation. Time-reversal symmetry, spin rotational symmetry, and the uniform pairing condition are assumed. It is found that the relation obtained in [https://link.aps.org/doi/10.1103/PhysRevB.106.014518] between the superfluid weight in the flat band limit and the so-called minimal quantum metric is valid even at the level of the generalized random phase approximation. For an isolated, but not necessarily flat, band it is found that the correction to the superfluid weight obtained from the generalized random phase approximation $D_{\rm s}^{(1)} = D_{\rm s,c}^{(1)}+D_{\rm s,g}^{(1)}$ is also the sum of a conventional contribution $D_{\rm s,c}^{(1)}$ and a geometric contribution $D_{\rm s,g}^{(1)}$, as in the case of the known mean-field result $D_{\rm s}^{(0)}=D_{\rm s,c}^{(0)}+D_{\rm s,g}^{(0)}$, in which the geometric term $D_{\rm s,g}^{(0)}$ is a weighted average of the quantum metric. The conventional contribution is geometry independent, that is independent of the orbital positions, while it is possible to find a preferred, or natural, set of orbital positions such that $D_{\rm s,g}^{(1)}=0$. Useful analytic expressions are derived for both the natural orbital positions and the minimal quantum metric, including its extension to bands that are not necessarily flat. Finally, using some simple examples, it is argued that the natural orbital positions may lead to a more refined classification of the topological properties of the band structure.
Related papers
- Topological phase transition in fluctuating imaginary gauge fields [0.0]
We investigate the exact solvability and point-gap topological phase transitions in non-Hermitian lattice models.
By employing suitable imaginary gauge transformations, it is revealed that a lattice characterized by any given $g_n$ is spectrally equivalent to a lattice devoid of fields.
arXiv Detail & Related papers (2024-06-11T07:10:03Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Conformal geometry from entanglement [14.735587711294299]
We identify a quantum information-theoretic mechanism by which the conformal geometry emerges at the gapless edge of a 2+1D quantum many-body system.
We show that stationarity of $mathfrakc_mathrmtot$ is equivalent to a vector fixed-point equation involving $eta$, making our assumption locally checkable.
arXiv Detail & Related papers (2024-04-04T18:00:03Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Quantum phase transitions in non-Hermitian
$\mathcal{P}\mathcal{T}$-symmetric transverse-field Ising spin chains [0.0]
We present a theoretical study of quantum phases and quantum phase transitions occurring in non-Hermitian $mathcalPmathcalT$-symmetric superconducting qubits chains.
A non-Hermitian part of the Hamiltonian is implemented via imaginary staggered textitlongitudinal magnetic field.
We obtain two quantum phases for $J0$, namely, $mathcalPmathcalT$-symmetry broken antiferromagnetic state and $mathcalPmathcalT$-symmetry preserved paramagnetic state
arXiv Detail & Related papers (2022-11-01T18:10:12Z) - Quantum information measures of the Dirichlet and Neumann hyperspherical
dots [0.0]
$mathttd$-dimensional hyperspherical quantum dot with either Dirichlet or Neumann boundary conditions (BCs)
This paves the way to an efficient computation in either space of Shannon, R'enyi and Tsallis entropies, Onicescu energies and Fisher informations.
arXiv Detail & Related papers (2021-03-24T11:08:31Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.