Topological phase transition in fluctuating imaginary gauge fields
- URL: http://arxiv.org/abs/2406.07009v1
- Date: Tue, 11 Jun 2024 07:10:03 GMT
- Title: Topological phase transition in fluctuating imaginary gauge fields
- Authors: Bikashkali Midya,
- Abstract summary: We investigate the exact solvability and point-gap topological phase transitions in non-Hermitian lattice models.
By employing suitable imaginary gauge transformations, it is revealed that a lattice characterized by any given $g_n$ is spectrally equivalent to a lattice devoid of fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the exact solvability and point-gap topological phase transitions in non-Hermitian lattice models. These models incorporate site-dependent nonreciprocal hoppings $J e^{\pm g_n}$, facilitated by a spatially fluctuating imaginary gauge field $ig_n \hat~x$ that disrupts translational symmetry. By employing suitable imaginary gauge transformations, it is revealed that a lattice characterized by any given $g_n$ is spectrally equivalent to a lattice devoid of fields, under open boundary conditions. Furthermore, a system with closed boundaries can be simplified to a spectrally equivalent lattice featuring a uniform mean field $i\bar{g}\hat~x$. This framework offers a comprehensive method for analytically predicting spectral topological invariance and associated boundary localization phenomena for bond-disordered nonperiodic lattices. These predictions are made by analyzing gauge-transformed isospectral periodic lattices. Notably, for a lattice with quasiperiodic $g_n= \ln |\lambda \cos 2\pi \alpha n|$ and an irrational $\alpha$, a previously unknown topological phase transition is unveiled. It is observed that the topological spectral index $W$ assumes values of $-N$ or $+N$, leading to all $N$ open-boundary eigenstates localizing either at the right or left edge, solely dependent on the strength of the gauge field, where $\lambda<2$ or $\lambda>2$. A phase transition is identified at the critical point $\lambda\approx2$, at which all eigenstates undergo delocalization. The theory has been shown to be relevant for long-range hopping models and for higher dimensions.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Total and Symmetry resolved Entanglement spectra in some Fermionic CFTs from the BCFT approach [0.0]
We study the universal total and symmetry-resolved entanglement spectra for a single interval of some $2$d Fermionic CFTs.
The partition of Hilbert space is achieved by cutting out discs around the entangling boundary points and imposing boundary conditions preserving the extended symmetry under scrutiny.
arXiv Detail & Related papers (2024-02-12T10:42:17Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Superfluid weight in the isolated band limit within the generalized random phase approximation [0.0]
The superfluid weight of a generic lattice model with attractive Hubbard interaction is computed analytically in the isolated band limit.
It is found that the relation obtained in [https://link.aps.org/doi103/PhysRevB.106.014518] between the superfluid weight in the flat band limit and the so-called minimal quantum metric is valid even at the level of the generalized random phase approximation.
arXiv Detail & Related papers (2023-08-21T15:11:32Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Quantum phase transitions in non-Hermitian
$\mathcal{P}\mathcal{T}$-symmetric transverse-field Ising spin chains [0.0]
We present a theoretical study of quantum phases and quantum phase transitions occurring in non-Hermitian $mathcalPmathcalT$-symmetric superconducting qubits chains.
A non-Hermitian part of the Hamiltonian is implemented via imaginary staggered textitlongitudinal magnetic field.
We obtain two quantum phases for $J0$, namely, $mathcalPmathcalT$-symmetry broken antiferromagnetic state and $mathcalPmathcalT$-symmetry preserved paramagnetic state
arXiv Detail & Related papers (2022-11-01T18:10:12Z) - Contrasting pseudo-criticality in the classical two-dimensional
Heisenberg and $\mathrm{RP}^2$ models: zero-temperature phase transition
versus finite-temperature crossover [0.0]
We compare the two-dimensional classical Heisenberg and $mathrmRP2$ models.
For the Heisenberg model, we find no signs of a finite-temperature phase transition.
For the $mathrmRP2$ model, we observe an abrupt onset of scaling behaviour.
arXiv Detail & Related papers (2022-02-15T17:35:15Z) - Towards a complete classification of non-chiral topological phases in 2D fermion systems [29.799668287091883]
We argue that all non-chiral fermionic topological phases in 2+1D are characterized by a set of tensors $(Nij_k,Fij_k,Fijm,alphabeta_kln,chidelta,n_i,d_i)$.
Several examples with q-type anyon excitations are discussed, including the Fermionic topological phase from Tambara-gami category for $mathbbZ_2N$.
arXiv Detail & Related papers (2021-12-12T03:00:54Z) - Classification of (2+1)D invertible fermionic topological phases with
symmetry [2.74065703122014]
We classify invertible fermionic topological phases of interacting fermions with symmetry in two spatial dimensions for general fermionic symmetry groups $G_f$.
Our results also generalize and provide a different approach to the recent classification of fermionic symmetry-protected topological phases by Wang and Gu.
arXiv Detail & Related papers (2021-09-22T21:02:07Z) - The Geometry of Time in Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We continue the study of nonrelativistic quantum gravity associated with a family of Ricci flow equations.
This topological gravity is of the cohomological type, and it exhibits an $cal N=2$ extended BRST symmetry.
We demonstrate a standard one-step BRST gauge-fixing of a theory whose fields are $g_ij$, $ni$ and $n$, and whose gauge symmetries consist of (i) the topological deformations of $g_ij$, and (ii) the ultralocal nonrelativistic limit of space
arXiv Detail & Related papers (2020-11-12T06:57:10Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.