論文の概要: Extracting Relational Triples Based on Graph Recursive Neural Network
via Dynamic Feedback Forest Algorithm
- arxiv url: http://arxiv.org/abs/2308.11411v1
- Date: Tue, 22 Aug 2023 13:00:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 18:10:19.860961
- Title: Extracting Relational Triples Based on Graph Recursive Neural Network
via Dynamic Feedback Forest Algorithm
- Title(参考訳): 動的フィードバックフォレストアルゴリズムによるグラフ再帰ニューラルネットワークに基づく関係三重項抽出
- Authors: Hongyin Zhu
- Abstract要約: 本稿では,三重抽出タスクをグラフラベル問題に変換する新しい手法を提案する。
本稿では,モデル学習中の推論操作によってサブタスクの表現を接続する動的フィードバックフォレストアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.9463895540925061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting relational triples (subject, predicate, object) from text enables
the transformation of unstructured text data into structured knowledge. The
named entity recognition (NER) and the relation extraction (RE) are two
foundational subtasks in this knowledge generation pipeline. The integration of
subtasks poses a considerable challenge due to their disparate nature. This
paper presents a novel approach that converts the triple extraction task into a
graph labeling problem, capitalizing on the structural information of
dependency parsing and graph recursive neural networks (GRNNs). To integrate
subtasks, this paper proposes a dynamic feedback forest algorithm that connects
the representations of subtasks by inference operations during model training.
Experimental results demonstrate the effectiveness of the proposed method.
- Abstract(参考訳): テキストからリレーショナルトリプル(オブジェクト、述語、オブジェクト)を抽出することで、構造化されていないテキストデータの構造化知識への変換が可能になる。
名前付きエンティティ認識(NER)と関係抽出(RE)は、この知識生成パイプラインの2つの基礎的なサブタスクである。
サブタスクの統合は、その異なる性質のため、かなりの困難をもたらす。
本稿では,依存性解析とグラフ再帰ニューラルネットワーク(grnns)の構造情報をもとに,三重抽出タスクをグラフラベリング問題に変換する新しい手法を提案する。
本稿では,モデル学習中の推論操作によってサブタスクの表現を接続する動的フィードバックフォレストアルゴリズムを提案する。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- Prompt Based Tri-Channel Graph Convolution Neural Network for Aspect
Sentiment Triplet Extraction [63.0205418944714]
Aspect Sentiment Triplet extract (ASTE)は、ある文の三つ子を抽出する新しいタスクである。
近年の研究では、単語関係を二次元テーブルにエンコードするテーブル充填パラダイムを用いてこの問題に対処する傾向にある。
本稿では, 関係表をグラフに変換し, より包括的な関係情報を探索する, Prompt-based Tri-Channel Graph Convolution Neural Network (PT-GCN) と呼ばれるASTEタスクの新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-12-18T12:46:09Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
学術論文からN-ary関係を抽出する問題について考察する。
提案手法であるReSelは,このタスクを2段階のプロシージャに分解する。
3つの科学的情報抽出データセットに対する実験により、ReSelは最先端のベースラインを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-10-26T02:28:02Z) - Modeling Multi-Granularity Hierarchical Features for Relation Extraction [26.852869800344813]
本稿では,原文のみに基づく多粒度特徴抽出手法を提案する。
外部知識を必要とせずに,効果的な構造的特徴が達成可能であることを示す。
論文 参考訳(メタデータ) (2022-04-09T09:44:05Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
ゼロショット関係トリプルト抽出(ZeroRTE)のタスク設定について紹介する。
入力文が与えられた後、抽出された各三重項は、トレーニング段階で関係ラベルが見えないヘッドエンティティ、リレーションラベル、テールエンティティから構成される。
本稿では、言語モデルに構造化テキストを生成するよう促すことで、関係例を合成する。
論文 参考訳(メタデータ) (2022-03-17T05:55:14Z) - Structured Sparse R-CNN for Direct Scene Graph Generation [16.646937866282922]
本稿では,構造スパースR-CNN(Structured Sparse R-CNN)と呼ばれる,単純な,疎結合で統一された関係検出フレームワークを提案する。
提案手法の鍵となるのは,学習可能な三重項クエリと構造化三重項検出器のセットである。
我々は,ビジュアルゲノムとオープンイメージの2つのベンチマークで実験を行い,本手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-06-21T02:24:20Z) - Document-level Relation Extraction as Semantic Segmentation [38.614931876015625]
文書レベルの関係抽出は、文書から複数のエンティティペア間の関係を抽出することを目的としている。
本稿では,局所的およびグローバルな情報を取得するために,エンティティレベルの関係行列を予測することで,この問題に対処する。
文書レベルの関係抽出のための文書U字型ネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T13:44:44Z) - Adjacency List Oriented Relational Fact Extraction via Adaptive
Multi-task Learning [24.77542721790553]
本稿では,すべての事実抽出モデルをグラフ指向分析の観点から整理可能であることを示す。
この分析枠組みに基づいて,効率的なモデルaDjacency lIst oRientational faCT(Direct)を提案する。
論文 参考訳(メタデータ) (2021-06-03T02:57:08Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
複雑な知識グラフにおける実体と関係の表現を学習するためにHittを提案する。
実験結果から,Hittは複数リンク予測において最先端の新たな結果が得られることがわかった。
さらに,HittをBERTに統合する簡単なアプローチを提案し,その効果を2つのFreebaseファクトイド対応データセットで示す。
論文 参考訳(メタデータ) (2020-08-28T18:58:15Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
クロス文関係は、抽出文書要約における重要なステップである。
We present a graph-based neural network for extractive summarization (HeterSumGraph)
抽出文書要約のためのグラフベースニューラルネットワークに異なる種類のノードを導入する。
論文 参考訳(メタデータ) (2020-04-26T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。