論文の概要: Addressing Data Scarcity in Optical Matrix Multiplier Modeling Using
Transfer Learning
- arxiv url: http://arxiv.org/abs/2308.11630v1
- Date: Thu, 10 Aug 2023 07:33:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-27 04:45:15.261952
- Title: Addressing Data Scarcity in Optical Matrix Multiplier Modeling Using
Transfer Learning
- Title(参考訳): 転送学習を用いた光行列乗算モデルにおけるデータ不足の解消
- Authors: Ali Cem, Ognjen Jovanovic, Siqi Yan, Yunhong Ding, Darko Zibar, and
Francesco Da Ros
- Abstract要約: 本稿では,データ不足に対処するためにトランスファーラーニング(transfer learning)を用いて実験的検討を行った。
提案手法では,より精度の低い解析モデルから生成された合成データを用いて,モデルの事前学習を行う。
フォトニックチップによって実装された行列重みに対する1dBのルート平均二乗誤差を、利用可能なデータの25%だけを用いて達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present and experimentally evaluate using transfer learning to address
experimental data scarcity when training neural network (NN) models for
Mach-Zehnder interferometer mesh-based optical matrix multipliers. Our approach
involves pre-training the model using synthetic data generated from a less
accurate analytical model and fine-tuning with experimental data. Our
investigation demonstrates that this method yields significant reductions in
modeling errors compared to using an analytical model, or a standalone NN model
when training data is limited. Utilizing regularization techniques and ensemble
averaging, we achieve < 1 dB root-mean-square error on the matrix weights
implemented by a photonic chip while using only 25% of the available data.
- Abstract(参考訳): 我々は、Mach-Zehnder干渉計メッシュを用いた光行列乗算器のためのニューラルネットワーク(NN)モデルを訓練する際に、転送学習を用いて実験データ不足に対処し、実験的に評価する。
提案手法は,不正確な解析モデルから生成された合成データと実験データとの微調整を用いた事前学習を行う。
本手法は, 学習データに制限がある場合, 解析モデルやスタンドアロンNNモデルと比較して, モデリング誤差が大幅に低減されることを示す。
正則化手法とアンサンブル平均化を利用して,フォトニックチップが実装した行列重みに対する1dBのルート平均二乗誤差を,利用可能なデータの25%のみを用いて達成する。
関連論文リスト
- Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
量子化法における実データを用いたキャリブレーションの代用として合成データを用いた場合について検討する。
本稿では,StyleGAN2-ADAが生成したデータと事前学習したDiStyleGANを用いて定量化したモデルの性能と,実データを用いた量子化とフラクタル画像に基づく代替データ生成手法との比較を行った。
論文 参考訳(メタデータ) (2023-05-10T11:10:09Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Data-efficient Modeling of Optical Matrix Multipliers Using Transfer
Learning [0.0]
本稿では,光学行列乗算器の伝送学習支援ニューラルネットワークモデルについて述べる。
提案手法では,Mach-Zehnder干渉計メッシュの解析モデルの性能向上と性能向上に要する実験データの10%を用いている。
論文 参考訳(メタデータ) (2022-11-29T09:22:42Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Data-driven Modeling of Mach-Zehnder Interferometer-based Optical Matrix
Multipliers [0.0]
フォトニック集積回路は光ニューラルネットワークの開発を促進する。
光学行列乗算器のオフライントレーニングのための単純な解析モデルとデータ駆動モデルの両方について述べる。
ニューラルネットワークベースのモデルは、予測誤差の観点から、単純な物理ベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2022-10-17T15:19:26Z) - Coordinated Double Machine Learning [8.808993671472349]
本稿では、ディープニューラルネットワークのための注意深く調整された学習アルゴリズムにより、推定バイアスを低減できると主張している。
シミュレーションデータと実データの両方を用いた数値実験により,提案手法の実証性能が向上したことを示す。
論文 参考訳(メタデータ) (2022-06-02T05:56:21Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
我々は、数値コードをより安価でプロジェクションベースのサロゲートモデルに置き換えている。
このモデルは、数値的な方法で必要となるすべての前の電場を計算することなく、所定の時間で電場を近似することができる。
このモデルでは, シミュレーションパラメータの狭い範囲におけるデータの摂動問題において, 高品質な再構成が示されており, 大規模な入力データに利用することができる。
論文 参考訳(メタデータ) (2021-06-01T08:46:04Z) - A Taylor Based Sampling Scheme for Machine Learning in Computational
Physics [0.0]
数値シミュレーションプログラムを用いてデータを生成する能力を利用して機械学習モデルをより良く訓練する。
通常の微分方程式(ODE)システムの解を学習する際のディープニューラルネットワーク(DNN)の誤差を低減するために、テイラー近似に基づく新しいデータサンプリングスキームを考案した。
論文 参考訳(メタデータ) (2021-01-20T12:56:09Z) - Exponentially improved detection and correction of errors in
experimental systems using neural networks [0.0]
実験装置の実証モデルを作成するために,2つの機械学習アルゴリズムを導入する。
これにより、一般化最適化タスクに必要な測定回数を指数関数的に削減することができる。
イオントラップ内の成層電場の検出と補償を例に,両アルゴリズムを実証する。
論文 参考訳(メタデータ) (2020-05-18T22:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。