論文の概要: Solving Elliptic Optimal Control Problems using Physics Informed Neural
Networks
- arxiv url: http://arxiv.org/abs/2308.11925v1
- Date: Wed, 23 Aug 2023 05:18:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 15:37:32.313864
- Title: Solving Elliptic Optimal Control Problems using Physics Informed Neural
Networks
- Title(参考訳): 物理情報ニューラルネットワークを用いた楕円最適制御問題の解法
- Authors: Bangti Jin and Ramesh Sau and Luowei Yin and Zhi Zhou
- Abstract要約: 本稿では,線形および半線形二階楕円問題に対する最適制御問題(ボックス制約付き)の数値解法を提案し,解析する。
この手法は最適制御問題の1次最適性システムから導かれる結合系に基づいており、結合系を解くために物理情報ニューラルネットワーク(PINN)を適用する。
- 参考スコア(独自算出の注目度): 4.228167013618626
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we present and analyze a numerical solver for optimal control
problems (without / with box constraint) for linear and semilinear second-order
elliptic problems. The approach is based on a coupled system derived from the
first-order optimality system of the optimal control problem, and applies
physics informed neural networks (PINNs) to solve the coupled system. We
present an error analysis of the numerical scheme, and provide $L^2(\Omega)$
error bounds on the state, control and adjoint state in terms of deep neural
network parameters (e.g., depth, width, and parameter bounds) and the number of
sampling points in the domain and on the boundary. The main tools in the
analysis include offset Rademacher complexity and boundedness and Lipschitz
continuity of neural network functions. We present several numerical examples
to illustrate the approach and compare it with three existing approaches.
- Abstract(参考訳): 本研究では,線形および半線形2次楕円問題に対する最適制御問題(ボックス制約なし/無制約)に対する数値解法を提案し,解析する。
この手法は最適制御問題の1次最適性システムから導かれる結合系に基づいており、結合系を解くために物理情報ニューラルネットワーク(PINN)を適用する。
本稿では,数値スキームの誤差解析を行い,ディープニューラルネットワークパラメータ(深さ,幅,パラメータ境界など)および領域内および境界上のサンプリング点数を用いて,状態,制御,随伴状態に対する$l^2(\omega)$の誤差境界を与える。
分析の主なツールは、オフセットラデマッハ複雑性と境界性、ニューラルネットワーク関数のリプシッツ連続性である。
提案手法の具体例をいくつか提示し,既存の3つの手法と比較する。
関連論文リスト
- LinSATNet: The Positive Linear Satisfiability Neural Networks [116.65291739666303]
本稿では,ニューラルネットワークに人気の高い正の線形満足度を導入する方法について検討する。
本稿では,古典的なシンクホーンアルゴリズムを拡張し,複数の辺分布の集合を共同で符号化する,最初の微分可能満足層を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:05:21Z) - ILP-based Resource Optimization Realized by Quantum Annealing for Optical Wide-area Communication Networks -- A Framework for Solving Combinatorial Problems of a Real-world Application by Quantum Annealing [5.924780594614675]
近年の研究では、D-Wave AdvantageTM量子アニールシステムに組み込むことができる2次非拘束二元最適化(QUBO)問題として、そのような問題をいかに実装できるかを実証した。
本稿では、システムパラメータの最適化に関する調査と、ソリューションの品質をさらに向上させるために機械学習(ML)技術をどのように取り入れているかについて報告する。
我々は、このNNを単純な整数線形プログラミング(ILP)の例で実装し、D-Waveが取得しなかった解空間をNNが完全にマッピングする方法を実証した。
論文 参考訳(メタデータ) (2024-01-01T17:52:58Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Imbedding Deep Neural Networks [0.0]
ニューラルODEのような連続深度ニューラルネットワークは、非線形ベクトル値の最適制御問題の観点から、残留ニューラルネットワークの理解を再燃させた。
本稿では,ネットワークの深さを基本変数とする新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T22:00:41Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
本研究では, 線形単位活性化の補正されたフィードフォワードニューラルネットワークを用いて, 目的関数をモデル化する最適化問題について検討する。
本稿では,1つのニューラルネットワークを最適化するために,既存のBig-M$の定式化をベースとした混合整数線形プログラムを提案する。
論文 参考訳(メタデータ) (2021-12-13T20:50:54Z) - Certifying Incremental Quadratic Constraints for Neural Networks via
Convex Optimization [2.388501293246858]
我々は,関心領域上のニューラルネットワークのマップ上で漸進的二次的制約を証明するための凸プログラムを提案する。
証明書は、(ローカル)Lipschitz連続性、片側Lipschitz連続性、反転性、および収縮などのいくつかの有用な特性をキャプチャできます。
論文 参考訳(メタデータ) (2020-12-10T21:15:00Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
コーン制約のある凸最適化プログラムを解くことにより,グローバルな2層ReLUニューラルネットワークの探索が可能であることを示す。
我々の分析は新しく、全ての最適解を特徴づけ、最近、ニューラルネットワークのトレーニングを凸空間に持ち上げるために使われた双対性に基づく分析を活用できない。
論文 参考訳(メタデータ) (2020-06-10T15:38:30Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。