Human Comprehensible Active Learning of Genome-Scale Metabolic Networks
- URL: http://arxiv.org/abs/2308.12740v2
- Date: Thu, 31 Aug 2023 22:21:19 GMT
- Title: Human Comprehensible Active Learning of Genome-Scale Metabolic Networks
- Authors: Lun Ai, Shi-Shun Liang, Wang-Zhou Dai, Liam Hallett, Stephen H.
Muggleton, Geoff S. Baldwin
- Abstract summary: A comprehensible machine learning approach that efficiently explores the hypothesis space and guides experimental design is urgently needed.
We introduce a novel machine learning framework ILP-iML1515 based on Inductive Logic Programming (ILP)
ILP-iML1515 is built on comprehensible logical representations of a genome-scale metabolic model and can update the model by learning new logical structures from auxotrophic mutant trials.
- Score: 7.838090421892651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An important application of Synthetic Biology is the engineering of the host
cell system to yield useful products. However, an increase in the scale of the
host system leads to huge design space and requires a large number of
validation trials with high experimental costs. A comprehensible machine
learning approach that efficiently explores the hypothesis space and guides
experimental design is urgently needed for the Design-Build-Test-Learn (DBTL)
cycle of the host cell system. We introduce a novel machine learning framework
ILP-iML1515 based on Inductive Logic Programming (ILP) that performs abductive
logical reasoning and actively learns from training examples. In contrast to
numerical models, ILP-iML1515 is built on comprehensible logical
representations of a genome-scale metabolic model and can update the model by
learning new logical structures from auxotrophic mutant trials. The ILP-iML1515
framework 1) allows high-throughput simulations and 2) actively selects
experiments that reduce the experimental cost of learning gene functions in
comparison to randomly selected experiments.
Related papers
- Active learning of digenic functions with boolean matrix logic programming [4.762323642506732]
We apply logic-based machine learning techniques to facilitate cellular engineering and drive biological discovery.
Learn the intricate genetic interactions within genome-scale metabolic network models.
A new system, $BMLP_active$, efficiently explores the genomic hypothesis space by guiding informative experimentation.
arXiv Detail & Related papers (2024-08-19T18:47:07Z) - Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models [4.762323642506732]
We seek to apply logic-based machine learning techniques to facilitate cellular engineering and drive biological discovery.
We introduce a new system, $BMLP_active$, which efficiently explores the genomic hypothesis space by guiding informative experimentation.
$BMLP_active$ can successfully learn the interaction between a gene pair with fewer training examples than random experimentation.
arXiv Detail & Related papers (2024-05-10T09:51:06Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
We propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python.
It streamlines the experimental process with minimal overhead while ensuring a high level of practitioner overhead.
arXiv Detail & Related papers (2024-02-21T14:22:20Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
We produce spiking neural systems that emulate the patterns of behavior of biological neurons in vitro.
Our models were able to produce a level of network-wide synchrony.
The genomes of the top-performing models indicate the excitability and density of connections in the model play an important role in determining the complexity of the produced activity.
arXiv Detail & Related papers (2021-10-15T17:55:04Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Automated Biodesign Engineering by Abductive Meta-Interpretive Learning [8.788941848262786]
We propose an automated biodesign engineering framework empowered by Abductive Meta-Interpretive Learning ($Meta_Abd$)
In this work, we propose an automated biodesign engineering framework empowered by Abductive Meta-Interpretive Learning ($Meta_Abd$)
arXiv Detail & Related papers (2021-05-17T12:10:26Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.