論文の概要: CDAN: Convolutional Dense Attention-guided Network for Low-light Image
Enhancement
- arxiv url: http://arxiv.org/abs/2308.12902v2
- Date: Sat, 26 Aug 2023 14:23:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 10:53:24.378664
- Title: CDAN: Convolutional Dense Attention-guided Network for Low-light Image
Enhancement
- Title(参考訳): CDAN:低照度画像強調のための畳み込みDense Attention-Guided Network
- Authors: Hossein Shakibania, Sina Raoufi, Hassan Khotanlou
- Abstract要約: 低照度画像は、明度が低下し、色が変色し、細部が小さくなるという課題を生んでいる。
本稿では,低照度画像を改善するための新しいソリューションであるCDAN(Convolutional Dense Attention-guided Network)を紹介する。
CDANは自動エンコーダベースのアーキテクチャと、アテンション機構とスキップ接続によって補完される、畳み込みブロックと密集ブロックを統合している。
- 参考スコア(独自算出の注目度): 2.532202013576547
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Low-light images, characterized by inadequate illumination, pose challenges
of diminished clarity, muted colors, and reduced details. Low-light image
enhancement, an essential task in computer vision, aims to rectify these issues
by improving brightness, contrast, and overall perceptual quality, thereby
facilitating accurate analysis and interpretation. This paper introduces the
Convolutional Dense Attention-guided Network (CDAN), a novel solution for
enhancing low-light images. CDAN integrates an autoencoder-based architecture
with convolutional and dense blocks, complemented by an attention mechanism and
skip connections. This architecture ensures efficient information propagation
and feature learning. Furthermore, a dedicated post-processing phase refines
color balance and contrast. Our approach demonstrates notable progress compared
to state-of-the-art results in low-light image enhancement, showcasing its
robustness across a wide range of challenging scenarios. Our model performs
remarkably on benchmark datasets, effectively mitigating under-exposure and
proficiently restoring textures and colors in diverse low-light scenarios. This
achievement underscores CDAN's potential for diverse computer vision tasks,
notably enabling robust object detection and recognition in challenging
low-light conditions.
- Abstract(参考訳): 低照度画像は、照明が不十分で、明度が低下し、色が変色し、細部が小さくなる。
コンピュータビジョンの重要なタスクである低光度画像強調は、明るさ、コントラスト、全体的な知覚品質を改善し、正確な分析と解釈を容易にすることで、これらの問題を是正することを目的としている。
本稿では,低照度画像を改善するための新しいソリューションであるCDAN(Convolutional Dense Attention-guided Network)を紹介する。
cdanは自動エンコーダベースのアーキテクチャと畳み込みブロックと密集ブロックを統合し、アテンション機構とスキップ接続を補完する。
このアーキテクチャは、効率的な情報伝達と特徴学習を保証する。
さらに、専用の後処理フェーズは、色バランスとコントラストを精製する。
我々のアプローチは、低光度画像強調における最先端の成果と比較して顕著な進歩を示しており、幅広い挑戦的シナリオにおいてその堅牢性を示している。
本モデルでは,低照度環境でのテクスチャや色彩の復元を効果的に行うため,ベンチマークデータセットを著しく改善する。
この成果は、CDANの様々なコンピュータビジョンタスクの可能性を強調し、特に低照度環境に挑戦するオブジェクトの検出と認識を可能にする。
関連論文リスト
- Semi-LLIE: Semi-supervised Contrastive Learning with Mamba-based Low-light Image Enhancement [59.17372460692809]
本研究は、平均教師による半教師付き低照度強化(Semi-LLIE)フレームワークを提案する。
照度分布を忠実に伝達するために、意味認識によるコントラスト損失を導入し、自然色による画像の強調に寄与する。
また,大規模な視覚言語認識モデル(RAM)に基づく新たな知覚損失を提案し,よりリッチなテキストによる画像生成を支援する。
論文 参考訳(メタデータ) (2024-09-25T04:05:32Z) - ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement [6.191556429706728]
不適切な照明は、情報損失や画質の低下を招き、監視などの様々な応用に影響を及ぼす可能性がある。
現在のエンハンスメント技術は、しばしば特定のデータセットを使用して低照度画像を強化するが、様々な現実世界の条件に適応する際の課題は残る。
アダプティブ・ライト・エンハンスメント・ネットワーク (ALEN) を導入し、その主なアプローチは、ローカル照明とグローバル照明の強化が必要であるかどうかを決定するための分類機構を使用することである。
論文 参考訳(メタデータ) (2024-07-29T05:19:23Z) - DARK: Denoising, Amplification, Restoration Kit [0.7670170505111058]
本稿では,低照度条件下での画像強調のための軽量な計算フレームワークを提案する。
我々のモデルは軽量に設計されており、標準のコンシューマハードウェア上でのリアルタイムアプリケーションに対する低計算需要と適合性を保証する。
論文 参考訳(メタデータ) (2024-05-21T16:01:13Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
本稿では,事前学習した潜伏拡散モデルを用いて,超低照度画像の高精細化のためのニューラルISPを実現することを提案する。
具体的には、RAWドメイン上で動作するために事前訓練された潜在拡散モデルを調整するために、軽量なテーミングモジュールのセットをトレーニングする。
遅延拡散モデルにおけるUNet復調と復号化の異なる役割を観察し、低照度画像強調タスクを遅延空間低周波コンテンツ生成と復号位相高周波ディテール保守に分解するきっかけとなる。
論文 参考訳(メタデータ) (2023-12-02T04:31:51Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
低照度環境は通常、情報の少ない大規模な暗黒地帯に繋がる。
本稿では,ガンマ補正の有効性を深層ネットワークのモデリング能力と統合することを提案する。
指数関数演算は高い計算複雑性をもたらすので、Taylor Series を用いてガンマ補正を近似することを提案する。
論文 参考訳(メタデータ) (2023-08-16T08:46:51Z) - Division Gets Better: Learning Brightness-Aware and Detail-Sensitive
Representations for Low-Light Image Enhancement [10.899693396348171]
LCDBNetは、輝度調整ネットワーク(LAN)と色復元ネットワーク(CRN)の2つのブランチで構成されている。
LANは、長距離依存と局所的な注意相関を利用した輝度認識機能を学ぶ責任を負う。
CRNはマルチレベルウェーブレット分解によるディテールセンシティブな特徴の学習に重点を置いている。
最後に、融合ネットワークは、学習した特徴をブレンドして視覚的に印象的な画像を生成するように設計されている。
論文 参考訳(メタデータ) (2023-07-18T09:52:48Z) - SCRNet: a Retinex Structure-based Low-light Enhancement Model Guided by
Spatial Consistency [22.54951703413469]
本稿では,SCRNet(Spatial Consistency Retinex Network)と呼ばれる,新しい低照度画像強調モデルを提案する。
提案モデルでは, 空間的整合性の原理に着想を得て, チャネルレベル, セマンティックレベル, テクスチャレベルという3つのレベルの整合性を考慮した。
様々な低照度画像データセットに対する広範囲な評価は、提案したSCRNetが既存の最先端手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-05-14T03:32:19Z) - Diffusion in the Dark: A Diffusion Model for Low-Light Text Recognition [78.50328335703914]
ディフュージョン・イン・ザ・ダーク (Diffusion in the Dark, DiD) は、テキスト認識のための低照度画像再構成のための拡散モデルである。
実画像上での低照度テキスト認識において,Digital DiDがSOTAの低照度手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-03-07T23:52:51Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
2段階の工程で細部と色を精錬しながら、内在的な劣化と低照度画像を照らし出す。
カラー画像の定式化に触発されて,まず低照度入力からの劣化を推定し,環境照明色の歪みをシミュレーションし,そのコンテンツを精錬して拡散照明色の損失を回復した。
LOL1000データセットではPSNRで0.95dB、ExDarkデータセットでは3.18%のmAPでSOTAを上回った。
論文 参考訳(メタデータ) (2021-03-19T04:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。