Macroscopic distant magnon modes entanglement via a squeezed reservoir
- URL: http://arxiv.org/abs/2308.13586v3
- Date: Sun, 17 Dec 2023 16:07:11 GMT
- Title: Macroscopic distant magnon modes entanglement via a squeezed reservoir
- Authors: Kamran Ullah, Muhammad Tahir Naseem, \"Ozg\"ur E.
M\"ustecapl{\i}o\u{g}lu
- Abstract summary: Quantum magnonics has garnered significant attention as a promising platform for advancing in this direction.
In our proposed scheme, we utilize a one-dimensional array of cavities coupled, with each cavity housing a single yttrium iron garnet (YIG) sphere.
Our results may lead to applications of cavity-magnon arrays in quantum information processing and quantum communication systems.
- Score: 0.2302001830524133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generation of robust entanglement in quantum system arrays is a crucial
aspect of the realization of efficient quantum information processing.
Recently, the field of quantum magnonics has garnered significant attention as
a promising platform for advancing in this direction. In our proposed scheme,
we utilize a one-dimensional array of coupled cavities, with each cavity
housing a single yttrium iron garnet (YIG) sphere coupled to the cavity mode
through magnetic dipole interaction. To induce entanglement between YIGs, we
employ a local squeezed reservoir, which provides the necessary nonlinearity
for entanglement generation. Our results demonstrate the successful generation
of bipartite and tripartite entanglement between distant magnon modes, all
achieved through a single quantum reservoir. Furthermore, the steady-state
entanglement between magnon modes is robust against magnon dissipation rates
and environment temperature. Our results may lead to applications of
cavity-magnon arrays in quantum information processing and quantum
communication systems.
Related papers
- Magnon-mediated qubit coupling determined via dissipation measurements [0.0]
Hybrid quantum systems (HQSs) of localized nitrogen-vacancy (NV) centers in diamond and delocalized magnon modes have attracted significant attention.
Here, we experimentally determine the magnon-mediated NV-NV coupling from the magnon-induced self-energy of NV centers.
Our results are quantitatively consistent with a model in which the NV center is coupled to magnons by dipolar interactions.
arXiv Detail & Related papers (2023-08-22T18:00:13Z) - Enhanced bipartite entanglement and Gaussian quantum steering of
squeezed magnon modes [0.0]
We investigate a scheme to entangle two squeezed magnon modes in a double cavitymagnon system, where both cavities are driven by a two-mode squeezed vacuum microwave field.
We have obtained optimal parameter regimes for achieving the strong magnon-magnon entanglement and also studied the effectiveness of this scheme towards the mismatch of both the cavity-magnon couplings and decay parameters.
arXiv Detail & Related papers (2023-07-19T09:07:01Z) - Magnon squeezing by two-tone driving of a qubit in cavity-magnon-qubit
systems [7.123040671954896]
We propose a scheme for preparing magnon squeezed states in a hybrid cavity-magnon-qubit system.
The generated squeezed states are of a magnon mode involving more than $1018$ spins and thus macroscopic quantum states.
arXiv Detail & Related papers (2023-04-21T06:09:13Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Multipartite entanglement generation in coupled microcavity arrays [0.0]
We consider photonic arrays made from quantum emitters in optically coupled microcavities as a platform for entanglement generation.
These offer a large degree of tunability with the possibility of site-selective optical excitation.
arXiv Detail & Related papers (2022-11-24T14:40:38Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Generation and structuring of multipartite entanglement in Josephson
parametric system [0.0]
vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement.
We achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones.
Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes.
arXiv Detail & Related papers (2022-03-17T11:16:32Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.