論文の概要: A transport approach to sequential simulation-based inference
- arxiv url: http://arxiv.org/abs/2308.13940v1
- Date: Sat, 26 Aug 2023 18:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 18:06:26.004266
- Title: A transport approach to sequential simulation-based inference
- Title(参考訳): 逐次シミュレーションに基づく推論へのトランスポートアプローチ
- Authors: Paul-Baptiste Rubio and Youssef Marzouk and Matthew Parno
- Abstract要約: 静的モデルパラメータの逐次ベイズ推定を効率的に行うためのトランスポートベース手法を提案する。
この戦略は、パラメータとデータの合同分布から条件分布を抽出し、構造化された(例えば、ブロック三角形)輸送マップを推定する。
これにより、モデルのないオンラインフェーズにおける輸送マップによる後部密度の勾配に基づく特徴付けが可能になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new transport-based approach to efficiently perform sequential
Bayesian inference of static model parameters. The strategy is based on the
extraction of conditional distribution from the joint distribution of
parameters and data, via the estimation of structured (e.g., block triangular)
transport maps. This gives explicit surrogate models for the likelihood
functions and their gradients. This allow gradient-based characterizations of
posterior density via transport maps in a model-free, online phase. This
framework is well suited for parameter estimation in case of complex noise
models including nuisance parameters and when the forward model is only known
as a black box. The numerical application of this method is performed in the
context of characterization of ice thickness with conductivity measurements.
- Abstract(参考訳): 静的モデルパラメータの逐次ベイズ推定を効率的に行うためのトランスポートベース手法を提案する。
この戦略は、構造化された(ブロック三角形の)輸送写像の推定を通じて、パラメータとデータの合同分布から条件分布を抽出することに基づいている。
これにより、確率関数とその勾配に対する明示的な代理モデルが得られる。
これにより、モデルのないオンラインフェーズにおける輸送マップによる後部密度の勾配に基づく特徴付けが可能になる。
このフレームワークは、ニュアンスパラメータを含む複雑なノイズモデルや、フォワードモデルがブラックボックスとしてのみ知られている場合のパラメータ推定に適している。
本手法の数値的応用は, 導電率測定による氷厚のキャラクタリゼーションの文脈で行った。
関連論文リスト
- Conditional simulation via entropic optimal transport: Toward non-parametric estimation of conditional Brenier maps [13.355769319031184]
条件付きシミュレーションは統計モデリングの基本的な課題である。
1つの有望なアプローチは条件付きブレニエ写像を構築することである。
等方的最適輸送の計算スケーラビリティに基づく条件付きブレニエ写像の非パラメトリック推定器を提案する。
論文 参考訳(メタデータ) (2024-11-11T17:32:47Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
拡散モデルは、ランダムノイズを特徴とする入力場から新しい地質学的実現を生成するために訓練される。
遅延拡散モデルは、ジオモデリングソフトウェアからのサンプルと視覚的に整合した実現を提供する。
論文 参考訳(メタデータ) (2024-06-21T01:32:03Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - A generative flow for conditional sampling via optimal transport [1.0486135378491266]
本研究は、参照サンプルを対象に反復的にマッピングする非パラメトリック生成モデルを提案する。
このモデルは、対象分布の条件を特徴付けるためにコンポーネントが示されるブロック三角形輸送マップを使用する。
これらのマップは、L2$コスト関数を重み付けした最適輸送問題の解法から生じ、条件付きサンプリングのための[Trigila and Tabak, 2016]におけるデータ駆動アプローチを拡張した。
論文 参考訳(メタデータ) (2023-07-09T05:36:26Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Approximate Bayesian Computation for Physical Inverse Modeling [0.32771631221674324]
本稿では,モデルパラメータ抽出プロセスを自動化する手法を提案する。
その結果, 勾配木を用いた移動曲線から抽出したパラメータを正確に予測できることが示唆された。
この研究は、提案したフレームワークと微調整されたニューラルネットワークの比較分析も提供し、提案したフレームワークの性能が向上することが示されている。
論文 参考訳(メタデータ) (2021-11-26T02:23:05Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - On the Existence of Optimal Transport Gradient for Learning Generative
Models [8.602553195689513]
Wasserstein Generative Adversarial Networks (WGAN) のトレーニングは、最適な輸送コストの勾配の計算に依存する。
まず、そのような勾配は定義されない可能性を示し、勾配に基づく最適化の際の数値的不安定性をもたらす。
実験データの離散性を利用して、半離散的な設定で勾配を定式化し、生成モデルパラメータの最適化のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-10T16:28:20Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。