A comprehensive review on Plant Leaf Disease detection using Deep
learning
- URL: http://arxiv.org/abs/2308.14087v1
- Date: Sun, 27 Aug 2023 12:20:28 GMT
- Title: A comprehensive review on Plant Leaf Disease detection using Deep
learning
- Authors: Sumaya Mustofa, Md Mehedi Hasan Munna, Yousuf Rayhan Emon, Golam
Rabbany, Md Taimur Ahad
- Abstract summary: Leaf disease is a common fatal disease for plants.
Several automated systems have already been developed using different plant pathology imaging modalities.
This paper provides a systematic review of the literature on leaf disease-based models for the diagnosis of various plant leaf diseases via deep learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leaf disease is a common fatal disease for plants. Early diagnosis and
detection is necessary in order to improve the prognosis of leaf diseases
affecting plant. For predicting leaf disease, several automated systems have
already been developed using different plant pathology imaging modalities. This
paper provides a systematic review of the literature on leaf disease-based
models for the diagnosis of various plant leaf diseases via deep learning. The
advantages and limitations of different deep learning models including Vision
Transformer (ViT), Deep convolutional neural network (DCNN), Convolutional
neural network (CNN), Residual Skip Network-based Super-Resolution for Leaf
Disease Detection (RSNSR-LDD), Disease Detection Network (DDN), and YOLO (You
only look once) are described in this review. The review also shows that the
studies related to leaf disease detection applied different deep learning
models to a number of publicly available datasets. For comparing the
performance of the models, different metrics such as accuracy, precision,
recall, etc. were used in the existing studies.
Related papers
- Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration [0.0]
Plant diseases significantly impact agricultural productivity, resulting in economic losses and food insecurity.
This study investigates advanced techniques in plant disease detection, emphasizing the integration of image processing, machine learning, deep learning methods, and mobile technologies.
High-resolution images of plant leaves were captured and analyzed using convolutional neural networks (CNNs) to detect symptoms of various diseases, such as blight, mildew, and rust.
The model was trained on a diverse dataset encompassing multiple crops and disease types, achieving 98.14% accuracy in disease diagnosis.
arXiv Detail & Related papers (2024-08-26T07:16:41Z) - A Comprehensive Literature Review on Sweet Orange Leaf Diseases [3.0177210416625115]
Leaf diseases impact fruit quality in the citrus industry.
Early detection and diagnosis are necessary for leaf management.
This comprehensive review study related to leaf disease compares the performance of the models.
arXiv Detail & Related papers (2023-12-04T09:35:21Z) - Machine Learning-Based Jamun Leaf Disease Detection: A Comprehensive
Review [0.0]
Jamun leaf diseases pose a significant threat to agricultural productivity.
The advent of machine learning has opened up new avenues for tackling these diseases effectively.
Various automated systems have been implemented for similar types of disease detection using image processing techniques.
arXiv Detail & Related papers (2023-11-27T11:46:30Z) - Machine Learning-Based Tea Leaf Disease Detection: A Comprehensive
Review [3.3916160303055563]
Tea leaf diseases are a major challenge to agricultural productivity, with far-reaching implications for yield and quality in the tea industry.
The rise of machine learning has enabled the development of innovative approaches to combat these diseases.
For predicting tea leaf disease, several automated systems have already been developed using different image processing techniques.
arXiv Detail & Related papers (2023-11-06T16:30:40Z) - Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT [11.623005206620498]
Plant diseases are the primary cause of crop losses globally, with an impact on the world economy.
In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services.
arXiv Detail & Related papers (2022-07-16T12:05:06Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.