A Comprehensive Literature Review on Sweet Orange Leaf Diseases
- URL: http://arxiv.org/abs/2312.01756v1
- Date: Mon, 4 Dec 2023 09:35:21 GMT
- Title: A Comprehensive Literature Review on Sweet Orange Leaf Diseases
- Authors: Yousuf Rayhan Emon, Md Golam Rabbani, Dr. Md. Taimur Ahad, Faruk Ahmed
- Abstract summary: Leaf diseases impact fruit quality in the citrus industry.
Early detection and diagnosis are necessary for leaf management.
This comprehensive review study related to leaf disease compares the performance of the models.
- Score: 3.0177210416625115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sweet orange leaf diseases are significant to agricultural productivity. Leaf
diseases impact fruit quality in the citrus industry. The apparition of machine
learning makes the development of disease finder. Early detection and diagnosis
are necessary for leaf management. Sweet orange leaf disease-predicting
automated systems have already been developed using different image-processing
techniques. This comprehensive literature review is systematically based on
leaf disease and machine learning methodologies applied to the detection of
damaged leaves via image classification. The benefits and limitations of
different machine learning models, including Vision Transformer (ViT), Neural
Network (CNN), CNN with SoftMax and RBF SVM, Hybrid CNN-SVM, HLB-ConvMLP,
EfficientNet-b0, YOLOv5, YOLOv7, Convolutional, Deep CNN. These machine
learning models tested on various datasets and detected the disease. This
comprehensive review study related to leaf disease compares the performance of
the models; those models' accuracy, precision, recall, etc., were used in the
subsisting studies
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Machine Learning-Based Jamun Leaf Disease Detection: A Comprehensive
Review [0.0]
Jamun leaf diseases pose a significant threat to agricultural productivity.
The advent of machine learning has opened up new avenues for tackling these diseases effectively.
Various automated systems have been implemented for similar types of disease detection using image processing techniques.
arXiv Detail & Related papers (2023-11-27T11:46:30Z) - Machine Learning-Based Tea Leaf Disease Detection: A Comprehensive
Review [3.3916160303055563]
Tea leaf diseases are a major challenge to agricultural productivity, with far-reaching implications for yield and quality in the tea industry.
The rise of machine learning has enabled the development of innovative approaches to combat these diseases.
For predicting tea leaf disease, several automated systems have already been developed using different image processing techniques.
arXiv Detail & Related papers (2023-11-06T16:30:40Z) - Virchow: A Million-Slide Digital Pathology Foundation Model [34.38679208931425]
We present Virchow, a foundation model for computational pathology.
Virchow is a vision transformer model with 632 million parameters trained on 1.5 million hematoxylin and eosin stained whole slide images.
arXiv Detail & Related papers (2023-09-14T15:09:35Z) - A comprehensive review on Plant Leaf Disease detection using Deep
learning [0.0]
Leaf disease is a common fatal disease for plants.
Several automated systems have already been developed using different plant pathology imaging modalities.
This paper provides a systematic review of the literature on leaf disease-based models for the diagnosis of various plant leaf diseases via deep learning.
arXiv Detail & Related papers (2023-08-27T12:20:28Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
Apple orchards in the U.S. are under constant threat from a large number of pathogens and insects. Appropriate and timely deployment of disease management depends on early disease detection.
We have manually captured 3,651 high-quality, real-life symptom images of multiple apple foliar diseases.
A subset, expert-annotated to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves, was made available to the Kaggle community for 'Plant Pathology Challenge'
arXiv Detail & Related papers (2020-04-24T19:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.