Integrated Approach of Gearbox Fault Diagnosis
- URL: http://arxiv.org/abs/2308.14174v1
- Date: Sun, 27 Aug 2023 18:35:46 GMT
- Title: Integrated Approach of Gearbox Fault Diagnosis
- Authors: Vikash Kumar, Subrata Mukherjee and Somnath Sarangi
- Abstract summary: This paper presents an integrated gearbox fault diagnosis approach which can easily deploy in online condition monitoring.
A set of time domain and spectral domain features are calculated from the raw and CEEO vibration signal.
Results of this work look very promising and can be implemented in any type of industrial system.
- Score: 14.884816915592241
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gearbox fault diagnosis is one of the most important parts in any industrial
systems. Failure of components inside gearbox can lead to a catastrophic
failure, uneven breakdown, and financial losses in industrial organization. In
that case intelligent maintenance of the gearbox comes into context. This paper
presents an integrated gearbox fault diagnosis approach which can easily deploy
in online condition monitoring. This work introduces a nonparametric data
preprocessing technique i.e., calculus enhanced energy operator (CEEO) to
preserve the characteristics frequencies in the noisy and inferred vibrational
signal. A set of time domain and spectral domain features are calculated from
the raw and CEEO vibration signal and inputted to the multiclass support vector
machine (MCSVM) to diagnose the faults on the system. An effective comparison
between raw signal and CEEO signal are presented to show the impact of CEEO in
gearbox fault diagnosis. The obtained results of this work look very promising
and can be implemented in any type of industrial system due to its
nonparametric nature.
Related papers
- Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - TDANet: A Novel Temporal Denoise Convolutional Neural Network With Attention for Fault Diagnosis [0.5277756703318045]
This paper proposes the Temporal Denoise Convolutional Neural Network With Attention (TDANet) to improve fault diagnosis performance in noise environments.
The TDANet model transforms one-dimensional signals into two-dimensional tensors based on their periodic properties, employing multi-scale 2D convolution kernels to extract signal information both within and across periods.
Evaluation on two datasets, CWRU (single sensor) and Real aircraft sensor fault (multiple sensors), demonstrates that the TDANet model significantly outperforms existing deep learning approaches in terms of diagnostic accuracy under noisy environments.
arXiv Detail & Related papers (2024-03-29T02:54:41Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Non-destructive Fault Diagnosis of Electronic Interconnects by Learning Signal Patterns of Reflection Coefficient in the Frequency Domain [1.8843687952462742]
We propose a novel, non-destructive approach for early fault detection and accurate diagnosis of interconnect defects.
Our approach utilizes the signal patterns of the coefficient reflection across a range of frequencies, enabling both root cause identification and severity assessment.
Experimental results demonstrate that the proposed method is effective for fault detection and diagnosis and has the potential to extend to real-world industrial applications.
arXiv Detail & Related papers (2023-04-20T10:51:21Z) - Novel features for the detection of bearing faults in railway vehicles [88.89591720652352]
We introduce Mel-Frequency Cepstral Coefficients (MFCCs) and features extracted from the Amplitude Modulation Spectrogram (AMS) as features for the detection of bearing faults.
arXiv Detail & Related papers (2023-04-14T10:09:50Z) - Deep Scattering Spectrum germaneness to Fault Detection and Diagnosis
for Component-level Prognostics and Health Management (PHM) [0.0]
This work focuses on the study of the Deep Scattering Spectrum (DSS)'s relevance to fault detection and daignosis for mechanical components of industrail robots.
We used multiple industrial robots and distinct mechanical faults to build an approach for classifying the faults.
The presented approach was implemented on the practical test benches and demonstrated satisfactory performance in fault detection and diagnosis.
arXiv Detail & Related papers (2022-10-18T13:25:02Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid
Framework for Rotating Machinery [2.580765958706854]
Fault diagnosis plays an essential role in reducing the maintenance costs of rotating machinery manufacturing systems.
Traditional Fault Detection and Diagnosis (FDD) frameworks get poor performances when dealing with real-world circumstances.
This paper proposes a hybrid framework which uses the three aforementioned components to achieve an effective signal-based FDD system.
arXiv Detail & Related papers (2022-02-09T01:09:59Z) - Vibration Fault Diagnosis in Wind Turbines based on Automated Feature
Learning [0.0]
We present a novel accurate fault diagnosis method for vibration-monitored wind turbine components.
Our approach combines autonomous data-driven learning of fault signatures and health state classification based on convolutional neural networks and isolation forests.
arXiv Detail & Related papers (2022-01-31T18:08:43Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
A novel transfer learning framework based on a pre-trained LeNet-5 convolutional neural network is proposed.
It is able to diagnose faults for different transmission line lengths and impedances by transferring the knowledge from a source neural network to predict a dissimilar target dataset.
arXiv Detail & Related papers (2022-01-20T06:36:35Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.