論文の概要: Distributed Dual Coordinate Ascent with Imbalanced Data on a General
Tree Network
- arxiv url: http://arxiv.org/abs/2308.14783v1
- Date: Mon, 28 Aug 2023 16:21:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 17:19:43.272240
- Title: Distributed Dual Coordinate Ascent with Imbalanced Data on a General
Tree Network
- Title(参考訳): 一般木ネットワーク上の不均衡データによる分散デュアルコーディネート上昇
- Authors: Myung Cho, Lifeng Lai, Weiyu Xu
- Abstract要約: そこで本稿では,不均衡なデータの情報を考慮し,遅延一般化分散二重座標法を提案する。
数値実験により,木ネットワークにおける分散双対座標昇華の収束速度向上における提案手法の有効性が検証された。
- 参考スコア(独自算出の注目度): 28.66759612946054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the impact of imbalanced data on the
convergence of distributed dual coordinate ascent in a tree network for solving
an empirical loss minimization problem in distributed machine learning. To
address this issue, we propose a method called delayed generalized distributed
dual coordinate ascent that takes into account the information of the
imbalanced data, and provide the analysis of the proposed algorithm. Numerical
experiments confirm the effectiveness of our proposed method in improving the
convergence speed of distributed dual coordinate ascent in a tree network.
- Abstract(参考訳): 本稿では,分散機械学習における経験的損失最小化問題を解決するために,木ネットワークにおける分散二座標上昇の収束に及ぼす不均衡データの影響について検討する。
この問題に対処するために,不均衡なデータの情報を考慮し,遅延一般化分散二元座標法という手法を提案し,提案アルゴリズムの解析を行った。
数値実験により,木ネットワークにおける分散二座標上昇の収束速度向上における提案手法の有効性を確認した。
関連論文リスト
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
本稿では,分散勾配勾配(D-SGDA)アルゴリズムの一般化境界の複雑さについて検討する。
本研究は,D-SGDAの一般化における各因子の影響を解析した。
また、最適凸凹設定を得るために一般化とバランスをとる。
論文 参考訳(メタデータ) (2023-10-31T11:27:01Z) - Distributed Linear Regression with Compositional Covariates [5.085889377571319]
大規模合成データにおける分散スパースペナル化線形ログコントラストモデルに着目する。
2つの異なる制約凸最適化問題を解くために2つの分散最適化手法を提案する。
分散化されたトポロジでは、通信効率の高い正規化推定値を得るための分散座標ワイド降下アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-10-21T11:09:37Z) - Distributed Variational Inference for Online Supervised Learning [15.038649101409804]
本稿では,スケーラブルな分散確率的推論アルゴリズムを提案する。
センサネットワークにおける連続変数、難解な後部データ、大規模リアルタイムデータに適用できる。
論文 参考訳(メタデータ) (2023-09-05T22:33:02Z) - Asynchronous Bayesian Learning over a Network [18.448653247778143]
本稿では,ネットワーク化されたエージェントが生データを共有せずに分散ベイズ学習を行うための非同期データ融合モデルを提案する。
アルゴリズムは、ランダムに選択されたエージェントのペアがパラメータサンプリングのために調整されていないランゲヴィンダイナミクスを使用するゴシップベースのアプローチを用いる。
本稿では,ゴシップエージェント間の通信をさらに削減するイベントトリガー機構を提案する。
論文 参考訳(メタデータ) (2022-11-16T01:21:36Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Communication-Efficient Distributionally Robust Decentralized Learning [23.612400109629544]
分散学習アルゴリズムは、相互接続されたエッジデバイスにデータと計算資源を共有する権限を与える。
そこで本研究では,単一分散ループ降下/上昇アルゴリズム(ADGDA)を提案し,その基礎となるミニマックス最適化問題を解く。
論文 参考訳(メタデータ) (2022-05-31T09:00:37Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
集中ノードを持たないエージェントネットワーク上での分散(強い凸)最適化問題について検討する。
$varepsilon$-solutionは$tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$通信ステップ数で達成される。
この速度は、関心のクラスに適用される分散ゴシップ-アルゴリズムの、初めて(ポリログ因子まで)より低い複雑性の通信境界と一致する。
論文 参考訳(メタデータ) (2021-10-24T04:03:00Z) - Distributed support-vector-machine over dynamic balanced directed
networks [10.76210145983805]
分散サポートマシンによるバイナリ分類問題を考察する。
離散ジャンプにおけるネットワークトポロジの変化を取り入れた連続時間アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-01T11:02:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。