論文の概要: FedChain: An Efficient and Secure Consensus Protocol based on Proof of Useful Federated Learning for Blockchain
- arxiv url: http://arxiv.org/abs/2308.15095v1
- Date: Tue, 29 Aug 2023 08:04:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 07:12:46.351108
- Title: FedChain: An Efficient and Secure Consensus Protocol based on Proof of Useful Federated Learning for Blockchain
- Title(参考訳): FedChain: ブロックチェーンのための効果的なフェデレーション学習の証明に基づく、効率的でセキュアなコンセンサスプロトコル
- Authors: Peiran Wang,
- Abstract要約: ブロックチェーンの中核はコンセンサスプロトコルであり、すべての参加者の間でコンセンサスを確立する。
ブロックチェーン(FedChain)のための有用なフェデレーション学習の証明に基づく,効率的かつセキュアなコンセンサスプロトコルを提案する。
当社のアプローチは広範な実験を通じて検証され,その性能を実証している。
- 参考スコア(独自算出の注目度): 0.3480973072524161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blockchain has become a popular decentralized paradigm for various applications in the zero-trust environment. The core of the blockchain is the consensus protocol, which establishes consensus among all the participants. PoW (Proof-of-Work) is one of the most popular consensus protocols. However, the PoW consensus protocol which incentives the participants to use their computing power to solve a meaningless hash puzzle is continuously questioned as energy-wasting. To address these issues, we propose an efficient and secure consensus protocol based on proof of useful federated learning for blockchain (called FedChain). We first propose a secure and robust blockchain architecture that takes federated learning tasks as proof of work. Then a pool aggregation mechanism is integrated to improve the efficiency of the FedChain architecture. To protect model parameter privacy for each participant within a mining pool, a secret sharing-based ring-all reduce architecture is designed. We also introduce a data distribution-based federated learning model optimization algorithm to improve the model performance of FedChain. At last, a zero-knowledge proof-based federated learning model verification is introduced to preserve the privacy of federated learning participants while proving the model performance of federated learning participants. Our approach has been tested and validated through extensive experiments, demonstrating its performance.
- Abstract(参考訳): ブロックチェーンは、ゼロトラスト環境において、さまざまなアプリケーションのための一般的な分散パラダイムになっています。
ブロックチェーンの中核はコンセンサスプロトコルであり、すべての参加者の間でコンセンサスを確立する。
PoW(Proof-of-Work)は、最も一般的なコンセンサスプロトコルの1つである。
しかし、参加者に無意味なハッシュパズルを解くためにコンピュータパワーを使用するよう促すPoWコンセンサスプロトコルは、常にエネルギー浪費として疑問視されている。
これらの問題に対処するため,ブロックチェーン(FedChain)の有用なフェデレーション学習の証明に基づく,効率的かつセキュアなコンセンサスプロトコルを提案する。
私たちはまず、フェデレートされた学習タスクを作業の証明として利用する、セキュアで堅牢なブロックチェーンアーキテクチャを提案します。
次に、FedChainアーキテクチャの効率を改善するためにプールアグリゲーション機構を統合する。
マイニングプール内の各参加者のモデルパラメータのプライバシを保護するために、秘密共有ベースのリングオールリデュースアーキテクチャを設計する。
また、FedChainのモデル性能を改善するために、データ分散に基づくフェデレーション学習モデル最適化アルゴリズムを導入する。
最後に、ゼロ知識証明に基づくフェデレーション学習モデルの検証を導入し、フェデレーション学習参加者のモデル性能を証明しつつ、フェデレーション学習参加者のプライバシを保存する。
当社のアプローチは広範な実験を通じて検証され,その性能を実証している。
関連論文リスト
- Research on Data Right Confirmation Mechanism of Federated Learning based on Blockchain [0.069060054915724]
フェデレートされた学習は、分散データマイニングと機械学習におけるプライバシ保護の問題を解決することができる。
本稿では,ブロックチェーンとスマートコントラクトに基づくデータ所有確認機構を提案する。
論文 参考訳(メタデータ) (2024-09-13T02:02:18Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
本稿では,Byzantine-fault Tolerant(BFT)コンセンサスプロトコルを用いた,しきい値暗号とブロックチェーンのクラス間の相互作用について検討する。
しきい値暗号システムに対する既存のアプローチは、しきい値暗号プロトコルを実行するための少なくとも1つのメッセージ遅延の遅延オーバーヘッドを導入している。
しきい値が狭いブロックチェーンネイティブのしきい値暗号システムに対して,このオーバーヘッドを取り除く機構を提案する。
論文 参考訳(メタデータ) (2024-07-16T20:53:04Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
我々は、ブロックチェーン対応Web 3.0のための、グラフ注意ネットワーク(GAT)ベースの信頼できるブロック伝搬最適化フレームワークを設計する。
ブロック伝搬の信頼性を実現するために,主観的論理モデルに基づく評価機構を導入する。
グラフ構造化データの処理能力に優れたGATが存在することを考慮し、GATを強化学習に利用して最適なブロック伝搬軌道を得る。
論文 参考訳(メタデータ) (2024-03-20T01:58:38Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - PPBFL: A Privacy Protected Blockchain-based Federated Learning Model [6.278098707317501]
フェデレート学習の安全性を高めるために,保護型フェデレート学習モデル(PPBFL)を提案する。
本稿では,訓練ノードのインセンティブを目的とした,連邦学習に適した訓練作業証明(PoTW)アルゴリズムを提案する。
また、リングシグネチャ技術を利用した新たなミックストランザクション機構を提案し、ローカルトレーニングクライアントのIDプライバシをよりよく保護する。
論文 参考訳(メタデータ) (2024-01-02T13:13:28Z) - Robust softmax aggregation on blockchain based federated learning with convergence guarantee [11.955062839855334]
本稿では,ブロックチェーンに基づくフェデレーション学習フレームワークを提案する。
まず、よくテストされた実証・オブ・ステークコンセンサス機構を利用するブロックチェーンベースの新しいフェデレーション学習アーキテクチャを提案する。
第2に,アグリゲーションプロセスの堅牢性を確保するために,新しいソフトマックスアグリゲーション法を設計する。
論文 参考訳(メタデータ) (2023-11-13T02:25:52Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z) - A Blockchain-based Decentralized Federated Learning Framework with
Committee Consensus [20.787163387487816]
モバイルコンピューティングのシナリオでは、フェデレートされた学習は、ユーザがプライベートデータを公開することを防ぐと同時に、さまざまな現実世界のアプリケーションのためにグローバルモデルを協調的にトレーニングする。
悪意のあるクライアントや、グローバルモデルやユーザプライバシデータに対する中央サーバの攻撃により、フェデレートドラーニングのセキュリティはますます疑問視されている。
本稿では,ブロックチェーンに基づく分散型フェデレーション学習フレームワーク,すなわち委員会コンセンサス(BFLC)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:04:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。