論文の概要: Sequential annotations for naturally-occurring HRI: first insights
- arxiv url: http://arxiv.org/abs/2308.15097v1
- Date: Tue, 29 Aug 2023 08:07:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 15:06:53.406251
- Title: Sequential annotations for naturally-occurring HRI: first insights
- Title(参考訳): 自然発生HRIのための逐次アノテーション:最初の洞察
- Authors: Lucien Tisserand (ICAR), Fr\'ed\'eric Armetta (SyCoSMA, LIRIS), Heike
Baldauf-Quilliatre (ICAR), Antoine Bouquin (SyCoSMA, LIRIS), Salima Hassas
(SyCoSMA, LIRIS), Mathieu Lefort (LIRIS, SyCoSMA)
- Abstract要約: 組込み会話エージェントによって達成されたインタラクションを改善するために開発した手法について説明する。
私たちは、自然に発生するインタラクションのコーパスを作成し、コミュニティに提供します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explain the methodology we developed for improving the interactions
accomplished by an embedded conversational agent, drawing from Conversation
Analytic sequential and multimodal analysis. The use case is a Pepper robot
that is expected to inform and orient users in a library. In order to propose
and learn better interactive schema, we are creating a corpus of
naturally-occurring interactions that will be made available to the community.
To do so, we propose an annotation practice based on some theoretical
underpinnings about the use of language and multimodal resources in human-robot
interaction. CCS CONCEPTS $\bullet$ Computing methodologies $\rightarrow$
Discourse, dialogue and pragmatics; $\bullet$ Human-centered computing
$\rightarrow$ Text input; HCI theory, concepts and models; Field studies.
- Abstract(参考訳): 本稿では,会話分析の逐次解析とマルチモーダル解析から,組込み会話エージェントによるインタラクションを改善する手法について説明する。
ユースケースはpepperロボットで、ライブラリのユーザに通知し、向き付けすることが期待されている。
より良いインタラクティブスキーマの提案と学習のために、私たちは自然に発生する対話のコーパスを作成し、コミュニティが利用できるようにしています。
そこで本研究では,人間とロボットの対話における言語とマルチモーダル資源の利用に関する理論的基礎に基づくアノテーション実践を提案する。
CCS CONCEPTS $\bullet$ Computing Methodologies $\rightarrow$ Discourse, dialogue and pragmatics; $\bullet$ Human-centered Computing $\rightarrow$ Text input; HCI理論、概念、モデル、フィールドスタディ。
関連論文リスト
- Learning Manipulation by Predicting Interaction [85.57297574510507]
本稿では,インタラクションを予測して操作を学習する一般的な事前学習パイプラインを提案する。
実験の結果,MPIは従来のロボットプラットフォームと比較して10%から64%向上していることがわかった。
論文 参考訳(メタデータ) (2024-06-01T13:28:31Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
会話レコメンデータシステム(CRS)は,自然言語会話を通じてユーザの嗜好を喚起することで,ユーザに対して関連項目を推薦することを目的としている。
先行作業では、アイテムのセマンティック情報、対話生成のための言語モデル、関連する項目のランク付けのためのレコメンデーションモジュールとして、外部知識グラフを利用することが多い。
本稿では、自然言語の項目を表現し、CRSを自然言語処理タスクとして定式化する。
論文 参考訳(メタデータ) (2024-01-25T14:07:34Z) - An Interleaving Semantics of the Timed Concurrent Language for
Argumentation to Model Debates and Dialogue Games [0.0]
エージェント間の同時相互作用をモデル化する言語を提案する。
このような言語は、エージェントが彼らの信念の受容可能性についてコミュニケーションし、推論するために使用する共有メモリを利用する。
知的エージェント間で行われる議論や対話ゲームのようなインタラクションをモデル化するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2023-06-13T10:41:28Z) - Contrastive Language, Action, and State Pre-training for Robot Learning [1.1000499414131326]
本稿では,ロボット学習における下流作業を支援するために,言語,行動,状態情報を共有埋め込み空間に統一する手法を提案する。
提案手法であるCLASP(Contrastive Language, Action, and State Pre-training)は,CLIPの定式化を拡張し,分散学習を取り入れ,振る舞いテキストアライメントにおける固有の複雑さと一対多の関係を捉える。
本手法は,ゼロショットテキストビヘイビア検索,未知のロボット動作のキャプション,言語条件の強化学習に先立って動作を学習する,といった下流作業に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-21T07:19:33Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
本稿では,PrLMの逐次文脈化を超えて,発話間の包括的相互作用のための合成学習を提案する。
私たちは、モデルが対話ドメインに適応するのを助けるために、ドメイン適応型トレーニング戦略を採用しています。
実験の結果,提案手法は4つの公開ベンチマークデータセットにおいて,強力なPrLMベースラインを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-01-10T13:18:25Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
会話における感情認識(英: emotion recognition in conversation、ERC)とは、2つ以上の発話を含む会話に焦点を当てた感情認識のサブフィールドである。
我々は,宣言的テンプレート言語である確率的ソフト論理(PSL)にアプローチを実装した。
PSLは、ニューラルモデルからPSLモデルへの結果の取り込みのための機能を提供する。
提案手法を最先端の純粋ニューラルネットワークERCシステムと比較した結果,約20%の改善が得られた。
論文 参考訳(メタデータ) (2022-07-14T23:59:06Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
ダイアログのための大規模事前学習言語モデルであるGODELを紹介する。
GODELは、数ショットの微調整設定で、最先端の事前訓練ダイアログモデルより優れていることを示す。
評価手法の新たな特徴は,応答の有用性を評価するユーティリティの概念の導入である。
論文 参考訳(メタデータ) (2022-06-22T18:19:32Z) - Mediators: Conversational Agents Explaining NLP Model Behavior [2.7878644615660457]
人間中心の説明可能な人工知能(HCXAI)コミュニティは、人間と機械の会話として説明プロセスをフレーミングする必要性を高めた。
我々は、自然言語を用いて対話的に神経モデルの振る舞いを説明することができるテキストベースの会話エージェントである、メディエーターのためのデシラタを確立する。
論文 参考訳(メタデータ) (2022-06-13T10:31:18Z) - Neural Approaches to Conversational Information Retrieval [94.77863916314979]
会話情報検索(CIR)システムは、会話インタフェースを備えた情報検索(IR)システムである。
近年のディープラーニングの進歩により、自然言語処理(NLP)と会話型AIが大幅に改善されている。
この本は、ここ数年で開発された神経アプローチに焦点を当てた、CIRの最近の進歩を調査します。
論文 参考訳(メタデータ) (2022-01-13T19:04:59Z) - SocAoG: Incremental Graph Parsing for Social Relation Inference in
Dialogues [112.94918467195637]
対話から社会的関係を推定することは、感情的に知的なロボットを構築するのに不可欠である。
我々は、グループ間の関係の整合性のために、SocAoGという名前のAnd-or Graphとしてソーシャルネットワークをモデル化する。
DialogRE と MovieGraph の実証実験結果から,我々のモデルは最先端の手法よりも社会的関係を正確に推定できることがわかった。
論文 参考訳(メタデータ) (2021-06-02T08:07:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。