論文の概要: Complementing Onboard Sensors with Satellite Map: A New Perspective for
HD Map Construction
- arxiv url: http://arxiv.org/abs/2308.15427v2
- Date: Tue, 19 Sep 2023 11:03:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 18:59:47.733896
- Title: Complementing Onboard Sensors with Satellite Map: A New Perspective for
HD Map Construction
- Title(参考訳): 衛星マップによる搭載センサの補完:hdマップ構築のための新しい展望
- Authors: Wenjie Gao, Jiawei Fu, Yanqing Shen, Haodong Jing, Shitao Chen,
Nanning Zheng
- Abstract要約: 高精細(HD)マップは自律運転システムにおいて重要な役割を担っている。
近年,車載センサを用いてHDマップをリアルタイムに構築する手法が提案されている。
搭載センサーを補完する衛星地図を用いて,HDマップ構築を促進する新しい視点を探索する。
- 参考スコア(独自算出の注目度): 31.0701760075554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-definition (HD) maps play a crucial role in autonomous driving systems.
Recent methods have attempted to construct HD maps in real-time using vehicle
onboard sensors. Due to the inherent limitations of onboard sensors, which
include sensitivity to detection range and susceptibility to occlusion by
nearby vehicles, the performance of these methods significantly declines in
complex scenarios and long-range detection tasks. In this paper, we explore a
new perspective that boosts HD map construction through the use of satellite
maps to complement onboard sensors. We initially generate the satellite map
tiles for each sample in nuScenes and release a complementary dataset for
further research. To enable better integration of satellite maps with existing
methods, we propose a hierarchical fusion module, which includes feature-level
fusion and BEV-level fusion. The feature-level fusion, composed of a mask
generator and a masked cross-attention mechanism, is used to refine the
features from onboard sensors. The BEV-level fusion mitigates the coordinate
differences between features obtained from onboard sensors and satellite maps
through an alignment module. The experimental results on the augmented nuScenes
showcase the seamless integration of our module into three existing HD map
construction methods. The satellite maps and our proposed module notably
enhance their performance in both HD map semantic segmentation and instance
detection tasks.
- Abstract(参考訳): 高精細(HD)マップは自動運転システムにおいて重要な役割を担っている。
近年,車載センサを用いたhdマップの構築が試みられている。
検出範囲に対する感度や近くの車両による閉塞に対する感受性など、車載センサの固有の制限のため、複雑なシナリオや長距離検出タスクにおいて、これらの手法の性能は著しく低下する。
本稿では,搭載センサを補完する衛星地図を用いて,HDマップ構築を促進する新しい視点について検討する。
まず,各サンプルのサテライトマップタイルをnuscenesで生成し,さらなる研究のために補足データセットを公開する。
衛星地図と既存の手法をよりよく統合するために,特徴レベルの融合とBEVレベルの融合を含む階層型融合モジュールを提案する。
マスクジェネレータとマスク付きクロスアテンション機構で構成された機能レベルの融合は、搭載センサーの機能を洗練するために使用される。
BEVレベルの融合は、搭載センサーから得られた特徴とアライメントモジュールによる衛星マップの座標差を緩和する。
拡張したnuScenesの実験結果は,既存の3つのHDマップ構築手法へのモジュールのシームレスな統合を示している。
衛星地図と提案モジュールは,HDマップセマンティックセグメンテーションとインスタンス検出タスクの両方において,その性能を著しく向上させる。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction [65.4151284975348]
OpenSatMapは、大規模マップ構築のための細粒度で高解像度の衛星データセットである。
データセットの公開とメンテナンスにより、衛星ベースのマップ構築と、自律運転のような下流タスクのための高品質なベンチマークを提供する。
論文 参考訳(メタデータ) (2024-10-30T17:56:02Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - GenMapping: Unleashing the Potential of Inverse Perspective Mapping for Robust Online HD Map Construction [20.1127163541618]
我々はGenMappingというユニバーサルマップ生成フレームワークを設計した。
このフレームワークは、主および二重補助枝を含む三進的なシナジーアーキテクチャで構築されている。
実験結果の網羅的な配列から,提案手法はセマンティックマッピングとベクトル化マッピングの両方において最先端の手法を超越し,高速な推論速度を維持した。
論文 参考訳(メタデータ) (2024-09-13T10:15:28Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
高精細マップ(HDマップ)は、自動運転車の正確なナビゲーションと意思決定に不可欠である。
オンボードセンサーを用いたHDマップのオンライン構築が,有望なソリューションとして浮上している。
本稿では,事前マップのパワーを活用して,これらの制約に対処するPresidedDriveフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-09T06:17:46Z) - Energy-Based Models for Cross-Modal Localization using Convolutional
Transformers [52.27061799824835]
GPSのない衛星画像に対して、距離センサを搭載した地上車両を位置決めする新しい枠組みを提案する。
本稿では, 畳み込み変換器を用いて, 高精度な計量レベルの局所化を行う手法を提案する。
我々は、エンドツーエンドでモデルをトレーニングし、KITTI、Pandaset、カスタムデータセットの最先端技術よりも高い精度でアプローチを実証する。
論文 参考訳(メタデータ) (2023-06-06T21:27:08Z) - MapFusion: A General Framework for 3D Object Detection with HDMaps [17.482961825285013]
現代の3Dオブジェクトディテクタパイプラインにマップ情報を統合するためのMapFusionを提案します。
マップ情報を融合することにより、3つの強力な3dオブジェクト検出ベースラインで平均精度(map)が1.27ポイントから2.79ポイント向上する。
論文 参考訳(メタデータ) (2021-03-10T08:36:59Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
高精細度(hd)マップは、現代の3dオブジェクト検出器の性能と頑健性を高める強力な事前情報を提供する。
我々はHDマップから幾何学的特徴と意味的特徴を抽出する単一ステージ検出器を設計する。
地図は至る所では利用できないため、生のLiDARデータからフライ時の地図を推定するマップ予測モジュールも提案する。
論文 参考訳(メタデータ) (2020-12-21T21:59:54Z) - UAV LiDAR Point Cloud Segmentation of A Stack Interchange with Deep
Neural Networks [26.9629258425327]
本研究では,新しい無人航空機(UAV)光検出・照準システム(LiDAR)によって収集された点雲について検討した。
ポイントクラウドを分類するために、エンドツーエンドで教師付き3Dディープラーニングフレームワークが提案された。
提案手法は,重畳畳み込みを伴う複雑な交換シナリオにおける3次元特徴を抽出し,93%以上の分類精度を達成した。
論文 参考訳(メタデータ) (2020-10-21T16:15:41Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
サイムズネットワークは、よく知られた3Dオブジェクト検出器アプローチのパイプラインに統合される。
アソシエーションはオブジェクトの3Dボックスレグレッションを強化するために利用される。
nuScenesデータセットの実験的評価は,提案手法が従来のNMS手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2020-02-19T15:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。