論文の概要: Identifying Constitutive Parameters for Complex Hyperelastic Materials using Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2308.15640v4
- Date: Sun, 23 Jun 2024 17:24:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 04:58:37.124713
- Title: Identifying Constitutive Parameters for Complex Hyperelastic Materials using Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークを用いた複合超弾性材料の構成パラメータの同定
- Authors: Siyuan Song, Hanxun Jin,
- Abstract要約: 軟質材料の材料パラメータの同定を目的とした,堅牢なPINNベースのフレームワークを提案する。
本モデルでは,マルチモーダル合成実験データセットを用いたPINNのトレーニングを強調した。
以上の結果から, PINN フレームワークは, 複雑なジオメトリーを持つ試料に対する圧縮不能な Arruda-Boyce モデルのパラメータを正確に同定し, 5% 未満の誤差を維持することができることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Identifying constitutive parameters in engineering and biological materials, particularly those with intricate geometries and mechanical behaviors, remains a longstanding challenge. The recent advent of Physics-Informed Neural Networks (PINNs) offers promising solutions, but current frameworks are often limited to basic constitutive laws and encounter practical constraints when combined with experimental data. In this paper, we introduce a robust PINN-based framework designed to identify material parameters for soft materials, specifically those exhibiting complex constitutive behaviors, under large deformation in plane stress conditions. Distinctively, our model emphasizes training PINNs with multi-modal synthetic experimental datasets consisting of full-field deformation and loading history, ensuring algorithm robustness even with noisy data. Our results reveal that the PINNs framework can accurately identify constitutive parameters of the incompressible Arruda-Boyce model for samples with intricate geometries, maintaining an error below 5%, even with an experimental noise level of 5%. We believe our framework provides a robust modulus identification approach for complex solids, especially for those with geometrical and constitutive complexity.
- Abstract(参考訳): 工学や生物学的材料、特に複雑なジオメトリーや機械的な振る舞いを持つ物質の構成的パラメータを同定することは、長年にわたる課題である。
近年の物理情報ニューラルネットワーク(PINN)の出現は、有望なソリューションを提供するが、現在のフレームワークは基本的な構成法則に制限され、実験データと組み合わせることで現実的な制約に直面することが多い。
本稿では,軟質材料,特に複雑な構成挙動を示す材料パラメータを平面応力条件下での大変形下で同定する,堅牢なPINNベースのフレームワークを提案する。
本モデルでは,マルチモーダルな合成実験データセットを用いたPINNのトレーニングを強調し,ノイズのあるデータであってもアルゴリズムの堅牢性を確保する。
その結果, PINN フレームワークは, 複雑なジオメトリを持つ試料に対して, 圧縮不能な Arruda-Boyce モデルの構成パラメータを正確に同定し, 実験ノイズレベル 5% においても誤差を5% 以下に維持できることがわかった。
我々は, 複雑な固体, 特に幾何学的, 構成的複雑性を有する固体に対して, 頑健な弾性率同定手法を提供すると考えている。
関連論文リスト
- NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements [7.704598780320887]
本研究では、PINNと高忠実度スペクトル要素法(SEM)を融合したハイブリッドフレームワークであるNeuroSEMを紹介した。
NeuroSEMはPINNとSEMの両方の強度を活用し、多物理問題に対する堅牢な解決策を提供する。
キャビティフローおよびシリンダーを過ぎる流れにおける熱対流に対するNeuroSEMの有効性と精度を実証した。
論文 参考訳(メタデータ) (2024-07-30T22:01:14Z) - Form-Finding and Physical Property Predictions of Tensegrity Structures Using Deep Neural Networks [39.19016806159609]
本研究では, 緊張構造の幾何学的構成と物理特性を予測するために, ディープニューラルネットワーク (DNN) アプローチを開発した。
検証のために, 粘度Dバー, プリズム, ランダーを含む3つの張力構造を解析した。
論文 参考訳(メタデータ) (2024-06-15T16:39:53Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - NeuralSI: Structural Parameter Identification in Nonlinear Dynamical
Systems [9.77270939559057]
本稿では,構造同定のための新しいフレームワークであるNeuralSIについて検討する。
提案手法は, 制御方程式から非線形パラメータを推定することを目的とする。
トレーニングされたモデルは、標準条件と極端な条件の両方で外挿することもできる。
論文 参考訳(メタデータ) (2022-08-26T16:32:51Z) - Calibrating constitutive models with full-field data via physics
informed neural networks [0.0]
実フィールド変位データに基づくモデルパラメータ化の発見のための物理インフォームド深層学習フレームワークを提案する。
我々は、ニューラルネットワークの予測に物理的な制約を課すために、強い形式ではなく、支配方程式の弱い形式で作業する。
我々は、インフォメーション機械学習が実現可能な技術であり、モデルのキャリブレーションにフルフィールド実験データをどのように利用するかというパラダイムを変える可能性があることを実証した。
論文 参考訳(メタデータ) (2022-03-30T18:07:44Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。