論文の概要: Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2210.07880v1
- Date: Fri, 14 Oct 2022 15:01:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 15:57:36.878100
- Title: Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations
- Title(参考訳): 連立正規微分方程式上の物理情報ニューラルネットワーク評価のための可変複素度ベンチマーク
- Authors: Alexander New and Benjamin Eng and Andrea C. Timm and Andrew S.
Gearhart
- Abstract要約: 本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
- 参考スコア(独自算出の注目度): 64.78260098263489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we assess the ability of physics-informed neural networks
(PINNs) to solve increasingly-complex coupled ordinary differential equations
(ODEs). We focus on a pair of benchmarks: discretized partial differential
equations and harmonic oscillators, each of which has a tunable parameter that
controls its complexity. Even by varying network architecture and applying a
state-of-the-art training method that accounts for "difficult" training
regions, we show that PINNs eventually fail to produce correct solutions to
these benchmarks as their complexity -- the number of equations and the size of
time domain -- increases. We identify several reasons why this may be the case,
including insufficient network capacity, poor conditioning of the ODEs, and
high local curvature, as measured by the Laplacian of the PINN loss.
- Abstract(参考訳): 本研究では,より複雑に結合した常微分方程式(ODE)を解くために,物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
我々は,離散偏微分方程式と調和振動子という2つのベンチマークに注目した。
ネットワークアーキテクチャの変更や,“差分”トレーニング領域を考慮した最先端のトレーニング手法の適用などによっても,pinnは最終的に,これらのベンチマークに対する正しいソリューションを,複雑性 – 方程式の数と時間領域のサイズ – として作り出せないことが分かる。
ピン損失のラプラシアンによって測定された,ネットワーク容量の不足,odesの条件が不十分なこと,局所曲率が高いことなど,この傾向が考えられるいくつかの理由を見出した。
関連論文リスト
- Adversarial Training for Physics-Informed Neural Networks [4.446564162927513]
本稿では,AT-PINN と呼ばれる PINN に対する敵的訓練戦略を提案する。
AT-PINNは、逆サンプルを用いてモデルを微調整することにより、PINNの堅牢性を高める。
我々は,マルチスケール係数の楕円型方程式,マルチピーク解のポアソン方程式,鋭解のバーガース方程式,アレン・カーンの方程式にAT-PINNを実装した。
論文 参考訳(メタデータ) (2023-10-18T08:28:43Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks [0.0]
訓練されたニューラルネットワークは普遍関数近似器として機能し、新しい方法で微分方程式を数値的に解くことができる。
従来の損失関数とトレーニングパラメータのバリエーションは、ニューラルネットワーク支援ソリューションをより効率的にする上で有望であることを示している。
論文 参考訳(メタデータ) (2022-08-07T17:12:39Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。