論文の概要: Physics-aware deep learning framework for linear elasticity
- arxiv url: http://arxiv.org/abs/2302.09668v1
- Date: Sun, 19 Feb 2023 20:33:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 17:15:08.526324
- Title: Physics-aware deep learning framework for linear elasticity
- Title(参考訳): 線形弾性のための物理対応深層学習フレームワーク
- Authors: Arunabha M. Roy and Rikhi Bose
- Abstract要約: 本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents an efficient and robust data-driven deep learning (DL)
computational framework developed for linear continuum elasticity problems. The
methodology is based on the fundamentals of the Physics Informed Neural
Networks (PINNs). For an accurate representation of the field variables, a
multi-objective loss function is proposed. It consists of terms corresponding
to the residual of the governing partial differential equations (PDE),
constitutive relations derived from the governing physics, various boundary
conditions, and data-driven physical knowledge fitting terms across randomly
selected collocation points in the problem domain. To this end, multiple
densely connected independent artificial neural networks (ANNs), each
approximating a field variable, are trained to obtain accurate solutions.
Several benchmark problems including the Airy solution to elasticity and the
Kirchhoff-Love plate problem are solved. Performance in terms of accuracy and
robustness illustrates the superiority of the current framework showing
excellent agreement with analytical solutions. The present work combines the
benefits of the classical methods depending on the physical information
available in analytical relations with the superior capabilities of the DL
techniques in the data-driven construction of lightweight, yet accurate and
robust neural networks. The models developed herein can significantly boost
computational speed using minimal network parameters with easy adaptability in
different computational platforms.
- Abstract(参考訳): 本稿では,線形連続弾性問題に対して,効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
この手法は、物理学インフォームドニューラルネットワーク(pinns)の基礎に基づいている。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
支配的偏微分方程式(pde)の残差に対応する項、支配物理学に由来する構成関係、様々な境界条件、問題領域内のランダムに選択されたコロケーション点間のデータ駆動的物理的知識適合項からなる。
この目的のために、フィールド変数を近似する複数の密結合された独立系ニューラルネットワーク(ann)を訓練し、正確な解を得る。
弾性に対するエアリー解やキルヒホフ・ラブプレート問題を含むいくつかのベンチマーク問題を解く。
正確性と堅牢性の点でのパフォーマンスは、分析ソリューションとの優れた一致を示す現在のフレームワークの優位性を示している。
本研究は、軽量で正確でロバストなニューラルネットワークのデータ駆動構成において、解析的関係で利用可能な物理情報とdl技術の優れた能力に依存する古典的手法の利点を組み合わせたものである。
ここで開発されたモデルは、異なる計算プラットフォームで容易に適応できる最小限のネットワークパラメータを用いて、計算速度を大幅に向上させることができる。
関連論文リスト
- A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)の安定性と精度の向上を目的とした,新しい残差ベースアーキテクチャを提案する。
このアーキテクチャは、残りの接続を組み込むことで従来のニューラルネットワークを強化し、よりスムーズなウェイト更新を可能にし、バックプロパゲーション効率を向上させる。
特にSquared Residual Networkは、従来のニューラルネットワークと比較して安定性と精度の向上を実現し、堅牢なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-10T05:20:43Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
本研究では,エアリーストレス関数とフーリエ級数を組み合わせた物理情報ニューラルネットワーク(PINN)の適用について検討する。
両高調波PDEに対するPINNソリューションの精度は, エアリー応力関数による特徴空間の強化により著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-08-16T17:19:50Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。