論文の概要: Securing Blockchain Systems: A Novel Collaborative Learning Framework to Detect Attacks in Transactions and Smart Contracts
- arxiv url: http://arxiv.org/abs/2308.15804v2
- Date: Tue, 26 Mar 2024 04:59:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:10:34.125849
- Title: Securing Blockchain Systems: A Novel Collaborative Learning Framework to Detect Attacks in Transactions and Smart Contracts
- Title(参考訳): ブロックチェーンシステムのセキュア化:トランザクションとスマートコントラクトの攻撃を検出するための新しい協調学習フレームワーク
- Authors: Tran Viet Khoa, Do Hai Son, Chi-Hieu Nguyen, Dinh Thai Hoang, Diep N. Nguyen, Nguyen Linh Trung, Tran Thi Thuy Quynh, Trong-Minh Hoang, Nguyen Viet Ha, Eryk Dutkiewicz, Mohammad Abu Alsheikh,
- Abstract要約: 本稿では、ブロックチェーントランザクションとスマートコントラクトの攻撃を検出するために設計された、新しい協調学習フレームワークを提案する。
当社のフレームワークは,マシンコードレベルでの複雑な攻撃を含む,さまざまな種類のブロックチェーン攻撃を分類する機能を示している。
我々のフレームワークは、広範囲なシミュレーションや、毎秒2150トランザクションを超えるスループットでリアルタイムな実験を通じて、約94%の精度で検出できる。
- 参考スコア(独自算出の注目度): 26.85360925398753
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the escalating prevalence of malicious activities exploiting vulnerabilities in blockchain systems, there is an urgent requirement for robust attack detection mechanisms. To address this challenge, this paper presents a novel collaborative learning framework designed to detect attacks in blockchain transactions and smart contracts by analyzing transaction features. Our framework exhibits the capability to classify various types of blockchain attacks, including intricate attacks at the machine code level (e.g., injecting malicious codes to withdraw coins from users unlawfully), which typically necessitate significant time and security expertise to detect. To achieve that, the proposed framework incorporates a unique tool that transforms transaction features into visual representations, facilitating efficient analysis and classification of low-level machine codes. Furthermore, we propose a customized collaborative learning model to enable real-time detection of diverse attack types at distributed mining nodes. In order to create a comprehensive dataset, we deploy a pilot system based on a private Ethereum network and conduct multiple attack scenarios. To the best of our knowledge, our dataset is the most comprehensive and diverse collection of transactions and smart contracts synthesized in a laboratory for cyberattack detection in blockchain systems. Our framework achieves a detection accuracy of approximately 94\% through extensive simulations and real-time experiments with a throughput of over 2,150 transactions per second. These compelling results validate the efficacy of our framework and showcase its adaptability in addressing real-world cyberattack scenarios.
- Abstract(参考訳): ブロックチェーンシステムの脆弱性を悪用する悪意のあるアクティビティがエスカレートしているため、堅牢な攻撃検出メカニズムには緊急の要件がある。
この課題に対処するために、ブロックチェーントランザクションとスマートコントラクトの攻撃を検出するために、トランザクションの特徴を分析することによって、新しい協調学習フレームワークを提案する。
当社のフレームワークは,マシンコードレベルでの複雑な攻撃(不正にユーザからコインを取り出す悪意のあるコードを注入するなど)など,さまざまな種類のブロックチェーン攻撃を分類する機能を備えています。
これを実現するために、提案フレームワークは、トランザクション機能を視覚表現に変換するユニークなツールを導入し、低レベルのマシンコードの効率的な分析と分類を容易にする。
さらに,分散マイニングノードにおける多様な攻撃タイプをリアルタイムに検出できる,カスタマイズされた協調学習モデルを提案する。
包括的なデータセットを作成するために、プライベートEthereumネットワークに基づいたパイロットシステムをデプロイし、複数の攻撃シナリオを実行する。
私たちの知る限り、私たちのデータセットは、ブロックチェーンシステムにおけるサイバー攻撃検出のための研究所で合成された、最も包括的で多様なトランザクションとスマートコントラクトのコレクションです。
我々のフレームワークは、広範囲なシミュレーションや、毎秒2,150トランザクション以上のスループットでリアルタイムな実験を通じて、約94 %の検知精度を実現している。
これらの説得力のある結果は、我々のフレームワークの有効性を検証し、現実世界のサイバー攻撃シナリオに対処する際の適応性を示す。
関連論文リスト
- BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFoundは、異常なブロックチェーントランザクション検出のためのカスタマイズされた基盤モデルである。
ブロックチェーントランザクションのユニークなデータ構造をモデル化するための、一連のカスタマイズデザインを紹介します。
BlockFoundは、Solana上の異常なトランザクションを高精度に検出する唯一の方法である。
論文 参考訳(メタデータ) (2024-10-05T05:11:34Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
本稿では,Byzantine-fault Tolerant(BFT)コンセンサスプロトコルを用いた,しきい値暗号とブロックチェーンのクラス間の相互作用について検討する。
しきい値暗号システムに対する既存のアプローチは、しきい値暗号プロトコルを実行するための少なくとも1つのメッセージ遅延の遅延オーバーヘッドを導入している。
しきい値が狭いブロックチェーンネイティブのしきい値暗号システムに対して,このオーバーヘッドを取り除く機構を提案する。
論文 参考訳(メタデータ) (2024-07-16T20:53:04Z) - Real-time Cyberattack Detection with Collaborative Learning for Blockchain Networks [29.481124078876032]
ブロックチェーンネットワークを保護するために,効率的な協調型サイバー攻撃検出モデルを提案する。
提案する検出モデルは,ブロックチェーンネットワークにおける攻撃を最大97%の精度で検出できる。
論文 参考訳(メタデータ) (2024-07-04T15:39:49Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts [15.071155232677643]
分散型金融(DeFi)インシデントは、30億ドルを超える経済的損害をもたらした。
現在の検出ツールは、攻撃活動を効果的に識別する上で重大な課題に直面している。
本稿では,敵対的契約の特定に焦点をあてた,DeFi攻撃検出のための新たな方向を提案する。
論文 参考訳(メタデータ) (2024-01-14T11:39:33Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
ブロックチェーンと分散台帳技術に基づくセキュアで信頼性の高いフェデレーション学習システムを提案する。
本システムでは,オンチェーン型スマートコントラクトを利用したピアツーピア投票機構と報酬アンドスラッシュ機構を組み込んで,悪意ある行動の検出と検出を行う。
論文 参考訳(メタデータ) (2023-07-02T11:23:33Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - An Automated Vulnerability Detection Framework for Smart Contracts [18.758795474791427]
ブロックチェーン上のスマートコントラクトの脆弱性を自動的に検出するフレームワークを提案する。
具体的には、まず、スマートコントラクトのバイトコードから新しい特徴ベクトル生成技術を利用する。
次に、収集したベクトルを新しいメトリック学習ベースディープニューラルネットワーク(DNN)に入力し、検出結果を得る。
論文 参考訳(メタデータ) (2023-01-20T23:16:04Z) - Collaborative Learning for Cyberattack Detection in Blockchain Networks [29.481124078876032]
本稿では、侵入攻撃を調査し、ブロックチェーンネットワークのネットワーク層におけるサイバー攻撃を検出する新しいサイバー攻撃検出フレームワークを開発することを目的とする。
ブロックチェーンネットワークに効率的に配置して攻撃を検知できる新しい協調学習モデルを提案する。
集中シミュレーションと実時間実験の両方で、我々の提案した侵入検知フレームワークが攻撃検出において最大98.6%の精度を達成できることが明らかに示されている。
論文 参考訳(メタデータ) (2022-03-21T15:55:41Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - Online Adversarial Attacks [57.448101834579624]
我々は、実世界のユースケースで見られる2つの重要な要素を強調し、オンライン敵攻撃問題を定式化する。
まず、オンライン脅威モデルの決定論的変種を厳格に分析する。
このアルゴリズムは、現在の最良の単一しきい値アルゴリズムよりも、$k=2$の競争率を確実に向上させる。
論文 参考訳(メタデータ) (2021-03-02T20:36:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。