論文の概要: Qudit Machine Learning
- arxiv url: http://arxiv.org/abs/2308.16230v1
- Date: Wed, 30 Aug 2023 18:00:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 18:50:07.454315
- Title: Qudit Machine Learning
- Title(参考訳): qudit機械学習
- Authors: Sebasti\'an Roca-Jerat, Juan Rom\'an-Roche, David Zueco
- Abstract要約: 簡単なdレベルシステム(qudit)の学習能力を総合的に検討する。
本研究は,実世界のデータベース,特にIris,乳癌,MNISTデータセットを用いた分類タスクに特化している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a comprehensive investigation into the learning capabilities of a
simple d-level system (qudit). Our study is specialized for classification
tasks using real-world databases, specifically the Iris, breast cancer, and
MNIST datasets. We explore various learning models in the metric learning
framework, along with different encoding strategies. In particular, we employ
data re-uploading techniques and maximally orthogonal states to accommodate
input data within low-dimensional systems.
Our findings reveal optimal strategies, indicating that when the dimension of
input feature data and the number of classes are not significantly larger than
the qudit's dimension, our results show favorable comparisons against the best
classical models. This trend holds true even for small quantum systems, with
dimensions d<5 and utilizing algorithms with a few layers (L=1,2). However, for
high-dimensional data such as MNIST, we adopt a hybrid approach involving
dimensional reduction through a convolutional neural network. In this context,
we observe that small quantum systems often act as bottlenecks, resulting in
lower accuracy compared to their classical counterparts.
- Abstract(参考訳): 本稿では,簡単なdレベルシステム(qudit)の学習能力に関する包括的調査を行う。
本研究は,実世界のデータベース,特にIris,乳癌,MNISTデータセットを用いた分類タスクに特化している。
我々は、様々なエンコーディング戦略とともに、メートル法学習フレームワークで様々な学習モデルを探索する。
特に,低次元システム内の入力データに対応するために,データ再アップロード技術と最大直交状態を用いる。
その結果,入力特徴量の次元とクラス数がquditの次元よりも大きくない場合,最良古典モデルと比較して好適な比較結果が得られた。
この傾向は、次元 d<5 を持ち、数層 (L=1,2) のアルゴリズムを利用する小さな量子系にも当てはまる。
しかし、MNISTのような高次元データに対して、畳み込みニューラルネットワークによる次元減少を伴うハイブリッドアプローチを採用する。
この文脈では、小さな量子系はしばしばボトルネックとして作用し、古典量子系に比べて精度が低いことが観察される。
関連論文リスト
- Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Entanglement Verification with Deep Semi-supervised Machine Learning [10.587454514254423]
ラベル付きデータの少ない部分とラベル付きデータの少ない部分を持つ深層半教師付き学習モデルを提案する。
我々は,従来の教師付き学習モデルと比較して,モデルが優れた一般化能力を持ち,精度が向上することを確認した。
論文 参考訳(メタデータ) (2023-08-29T15:41:04Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Precision Machine Learning [5.15188009671301]
様々な関数近似法を比較し,パラメータやデータの増加とともにスケールする方法について検討する。
ニューラルネットワークは、しばしば高次元の例において古典的近似法より優れていることが判明した。
我々は,ニューラルネットワークを極端に低損失に訓練する訓練手法を開発した。
論文 参考訳(メタデータ) (2022-10-24T17:58:30Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - An Online Learning Algorithm for a Neuro-Fuzzy Classifier with
Mixed-Attribute Data [9.061408029414455]
General Fuzzy min-max Neural Network (GFMMNN) は、データ分類のための効率的な神経ファジィシステムの一つである。
本稿ではGFMMNNのための拡張オンライン学習アルゴリズムを提案する。
提案手法は連続的特徴と分類的特徴の両方でデータセットを処理できる。
論文 参考訳(メタデータ) (2020-09-30T13:45:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。