論文の概要: MVDream: Multi-view Diffusion for 3D Generation
- arxiv url: http://arxiv.org/abs/2308.16512v4
- Date: Thu, 18 Apr 2024 04:12:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 14:29:13.940071
- Title: MVDream: Multi-view Diffusion for 3D Generation
- Title(参考訳): MVDream:3次元生成のための多視点拡散
- Authors: Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, Xiao Yang,
- Abstract要約: 本稿では,テキストプロンプトから一貫した多視点画像を生成可能な拡散モデルMVDreamを紹介する。
2次元データと3次元データの両方から学習すると、多視点拡散モデルは2次元拡散モデルの一般化可能性と3次元レンダリングの整合性を達成することができる。
- 参考スコア(独自算出の注目度): 14.106283556521962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce MVDream, a diffusion model that is able to generate consistent multi-view images from a given text prompt. Learning from both 2D and 3D data, a multi-view diffusion model can achieve the generalizability of 2D diffusion models and the consistency of 3D renderings. We demonstrate that such a multi-view diffusion model is implicitly a generalizable 3D prior agnostic to 3D representations. It can be applied to 3D generation via Score Distillation Sampling, significantly enhancing the consistency and stability of existing 2D-lifting methods. It can also learn new concepts from a few 2D examples, akin to DreamBooth, but for 3D generation.
- Abstract(参考訳): 本稿では,テキストプロンプトから一貫した多視点画像を生成することができる拡散モデルMVDreamを紹介する。
2次元データと3次元データの両方から学習すると、多視点拡散モデルは2次元拡散モデルの一般化可能性と3次元レンダリングの整合性を達成することができる。
このような多視点拡散モデルは、暗黙的に3次元表現に非依存な3次元の一般化可能であることを実証する。
Score Distillation Smplingによる3D生成に適用でき、既存の2Dリフト法の一貫性と安定性を著しく向上させることができる。
また、DreamBoothに似た2Dの例から新しいコンセプトを学ぶこともできる。
関連論文リスト
- Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High- resolution Image-to-3D model (Hi3D) はビデオ拡散に基づく新しいパラダイムであり、単一の画像を3D対応シーケンシャル画像生成としてマルチビュー画像に再定義する。
Hi3Dは事前に学習した映像拡散モデルを3D対応で強化し、低解像度のテクスチャディテールを持つマルチビュー画像を生成する。
論文 参考訳(メタデータ) (2024-09-11T17:58:57Z) - Human 3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion Models [29.73743772971411]
人間の3次元拡散: 明示的な3次元連続拡散による現実的なアバター創造を提案する。
我々の重要な洞察は、2次元多視点拡散と3次元再構成モデルが相互に補完情報を提供するということである。
提案するフレームワークは,最先端の手法より優れ,単一のRGB画像から現実的なアバターを作成することができる。
論文 参考訳(メタデータ) (2024-06-12T17:57:25Z) - MVDiff: Scalable and Flexible Multi-View Diffusion for 3D Object Reconstruction from Single-View [0.0]
本稿では,単一画像から一貫した多視点画像を生成するための一般的なフレームワークを提案する。
提案モデルは,PSNR,SSIM,LPIPSなどの評価指標において,ベースライン法を超える3Dメッシュを生成することができる。
論文 参考訳(メタデータ) (2024-05-06T22:55:53Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2024-03-14T07:39:59Z) - Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D
Prior [52.44678180286886]
2次元拡散モデルでは、3次元データなしで優れた一般化と豊富な詳細を実現する蒸留手法が見つかる。
提案するSherpa3Dは,高忠実度,一般化性,幾何整合性を同時に実現する新しいテキスト・ツー・3Dフレームワークである。
論文 参考訳(メタデータ) (2023-12-11T18:59:18Z) - Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion [32.13452288549591]
3Dコンテンツを作成するための現在の方法は、時間がかかり、生成の多様性を失う。
本研究では,事前学習した2次元拡散モデルから2.5D拡散を微調整した多視点モデルを用いる。
特別に設計された融合方式による2.5D直接生成は,10秒で多種多様で,モードフリーで,高忠実な3Dコンテンツ生成を実現することができることを示す。
論文 参考訳(メタデータ) (2023-11-27T16:26:54Z) - MAS: Multi-view Ancestral Sampling for 3D motion generation using 2D diffusion [57.90404618420159]
本稿では3次元モーション生成手法であるマルチビューアンセストラルサンプリング(MAS)を紹介する。
MASは、同じ3Dモーションの異なるビューを表す複数の2Dモーションシーケンスを同時に認知することで機能する。
プロバスケットボールの操り方を描いたビデオから得られた2DポーズデータをMASで実証する。
論文 参考訳(メタデータ) (2023-10-23T09:05:18Z) - GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models [102.22388340738536]
2Dおよび3D拡散モデルは、プロンプトに基づいて適切な3Dオブジェクトを生成することができる。
3次元拡散モデルには優れた3次元整合性があるが、トレーニング可能な3次元データは高価で入手が難しいため、その品質と一般化は制限されている。
本稿では,2種類の拡散モデルから近年の明示的かつ効率的な3次元ガウススプラッティング表現を通じて電力を橋渡ししようとする。
論文 参考訳(メタデータ) (2023-10-12T17:22:24Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
我々は,2次元画像のみを監督のために配置した,エンドツーエンドでトレーニング可能な新しい拡散装置を導入する。
我々の拡散モデルはスケーラブルで、頑健に訓練されており、既存の3次元生成モデルへのアプローチに対して、サンプルの品質と忠実さの点で競争力があることを示す。
論文 参考訳(メタデータ) (2023-03-29T07:35:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。