Unsupervised discovery of Interpretable Visual Concepts
- URL: http://arxiv.org/abs/2309.00018v2
- Date: Tue, 21 Nov 2023 09:22:28 GMT
- Title: Unsupervised discovery of Interpretable Visual Concepts
- Authors: Caroline Mazini Rodrigues (LIGM, LRDE), Nicolas Boutry (LRDE), Laurent
Najman (LIGM)
- Abstract summary: We propose two methods to explain a model's decision, enhancing global interpretability.
One method is inspired by Occlusion and Sensitivity analysis (incorporating causality)
The other method uses a novel metric, called Class-aware Order Correlation (CaOC), to globally evaluate the most important image regions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Providing interpretability of deep-learning models to non-experts, while
fundamental for a responsible real-world usage, is challenging. Attribution
maps from xAI techniques, such as Integrated Gradients, are a typical example
of a visualization technique containing a high level of information, but with
difficult interpretation. In this paper, we propose two methods, Maximum
Activation Groups Extraction (MAGE) and Multiscale Interpretable Visualization
(Ms-IV), to explain the model's decision, enhancing global interpretability.
MAGE finds, for a given CNN, combinations of features which, globally, form a
semantic meaning, that we call concepts. We group these similar feature
patterns by clustering in ``concepts'', that we visualize through Ms-IV. This
last method is inspired by Occlusion and Sensitivity analysis (incorporating
causality), and uses a novel metric, called Class-aware Order Correlation
(CaOC), to globally evaluate the most important image regions according to the
model's decision space. We compare our approach to xAI methods such as LIME and
Integrated Gradients. Experimental results evince the Ms-IV higher localization
and faithfulness values. Finally, qualitative evaluation of combined MAGE and
Ms-IV demonstrates humans' ability to agree, based on the visualization, with
the decision of clusters' concepts; and, to detect, among a given set of
networks, the existence of bias.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG) [24.02036048242832]
This paper introduces a novel approach to trace the entire pathway from input through all intermediate layers to the final output within the whole dataset.
We utilize Pointwise Feature Vectors (PFVs) and Effective Receptive Fields (ERFs) to decompose model embeddings into interpretable Concept Vectors.
Then, we calculate the relevance between concept vectors with our Generalized Integrated Gradients (GIG) enabling a comprehensive, dataset-wide analysis of model behavior.
arXiv Detail & Related papers (2024-09-03T05:19:35Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Visual Commonsense based Heterogeneous Graph Contrastive Learning [79.22206720896664]
We propose a heterogeneous graph contrastive learning method to better finish the visual reasoning task.
Our method is designed as a plug-and-play way, so that it can be quickly and easily combined with a wide range of representative methods.
arXiv Detail & Related papers (2023-11-11T12:01:18Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs)
Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image.
For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence.
arXiv Detail & Related papers (2023-11-07T08:27:32Z) - Towards the Visualization of Aggregated Class Activation Maps to Analyse
the Global Contribution of Class Features [0.47248250311484113]
Class Activation Maps (CAMs) visualizes the importance of each feature of a data sample contributing to the classification.
We aggregate CAMs from multiple samples to show a global explanation of the classification for semantically structured data.
Our approach allows an analyst to detect important features of high-dimensional data and derive adjustments to the AI model based on our global explanation visualization.
arXiv Detail & Related papers (2023-07-29T11:13:11Z) - Open-vocabulary Semantic Segmentation with Frozen Vision-Language Models [39.479912987123214]
Self-supervised learning has exhibited a notable ability to solve a wide range of visual or language understanding tasks.
We introduce Fusioner, with a lightweight, transformer-based fusion module, that pairs the frozen visual representation with language concept.
We show that, the proposed fusion approach is effective to any pair of visual and language models, even those pre-trained on a corpus of uni-modal data.
arXiv Detail & Related papers (2022-10-27T02:57:26Z) - Evaluating Explainable Artificial Intelligence Methods for Multi-label
Deep Learning Classification Tasks in Remote Sensing [0.0]
We develop deep learning models with state-of-the-art performance in benchmark datasets.
Ten XAI methods were employed towards understanding and interpreting models' predictions.
Occlusion, Grad-CAM and Lime were the most interpretable and reliable XAI methods.
arXiv Detail & Related papers (2021-04-03T11:13:14Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
We present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines' capability of learning generalizable concepts.
In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images.
We undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3.
arXiv Detail & Related papers (2021-03-02T01:32:54Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Explaining Convolutional Neural Networks through Attribution-Based Input
Sampling and Block-Wise Feature Aggregation [22.688772441351308]
Methods based on class activation mapping and randomized input sampling have gained great popularity.
However, the attribution methods provide lower resolution and blurry explanation maps that limit their explanation power.
In this work, we collect visualization maps from multiple layers of the model based on an attribution-based input sampling technique.
We also propose a layer selection strategy that applies to the whole family of CNN-based models.
arXiv Detail & Related papers (2020-10-01T20:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.