Incorporating Attributes and Multi-Scale Structures for Heterogeneous Graph Contrastive Learning
- URL: http://arxiv.org/abs/2503.13911v2
- Date: Thu, 10 Apr 2025 09:07:02 GMT
- Title: Incorporating Attributes and Multi-Scale Structures for Heterogeneous Graph Contrastive Learning
- Authors: Ruobing Jiang, Yacong Li, Haobing Liu, Yanwei Yu,
- Abstract summary: We propose a novel contrastive learning framework for heterogeneous graphs (ASHGCL)<n>ASHGCL incorporates three distinct views, each focusing on node attributes, high-order and low-order structural information, respectively.<n>We introduce an attribute-enhanced positive sample selection strategy that combines both structural information and attribute information.
- Score: 8.889313669713918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterogeneous graphs (HGs) are composed of multiple types of nodes and edges, making it more effective in capturing the complex relational structures inherent in the real world. However, in real-world scenarios, labeled data is often difficult to obtain, which limits the applicability of semi-supervised approaches. Self-supervised learning aims to enable models to automatically learn useful features from data, effectively addressing the challenge of limited labeling data. In this paper, we propose a novel contrastive learning framework for heterogeneous graphs (ASHGCL), which incorporates three distinct views, each focusing on node attributes, high-order and low-order structural information, respectively, to effectively capture attribute information, high-order structures, and low-order structures for node representation learning. Furthermore, we introduce an attribute-enhanced positive sample selection strategy that combines both structural information and attribute information, effectively addressing the issue of sampling bias. Extensive experiments on four real-world datasets show that ASHGCL outperforms state-of-the-art unsupervised baselines and even surpasses some supervised benchmarks.
Related papers
- Enhancing Missing Data Imputation through Combined Bipartite Graph and Complete Directed Graph [18.06658040186476]
We introduce a novel framework named the Bipartite and Complete Directed Graph Neural Network (BCGNN)
Within BCGNN, observations and features are differentiated as two distinct node types, and the values of observed features are converted into attributed edges linking them.
In parallel, the complete directed graph segment adeptly outlines and communicates the complex interdependencies among features.
arXiv Detail & Related papers (2024-11-07T17:48:37Z) - RDSA: A Robust Deep Graph Clustering Framework via Dual Soft Assignment [18.614842530666834]
We introduce a new framework called the Robust Deep Graph Clustering Framework via Dual Soft Assignment (RDSA)<n>RDSA consists of three key components: (i) a node embedding module that effectively integrates the graph's topological features and node attributes; (ii) a structure-based soft assignment module that improves graph modularity by utilizing an affinity matrix for node assignments; and (iii) a node-based soft assignment module that identifies community landmarks and refines node assignments to enhance the model's robustness.<n>We assess RDSA on various real-world datasets, demonstrating its superior performance relative to existing state-of-the-
arXiv Detail & Related papers (2024-10-29T05:18:34Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
We propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG)
Specifically, EMVGC-LG jointly optimize anchor construction and graph learning to enhance the clustering quality.
In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number.
arXiv Detail & Related papers (2023-08-31T12:12:30Z) - Dual Information Enhanced Multi-view Attributed Graph Clustering [11.624319530337038]
A novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper.
The proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views.
The Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure.
arXiv Detail & Related papers (2022-11-28T01:18:04Z) - High-order Multi-view Clustering for Generic Data [15.764819403555512]
Graph-based multi-view clustering has achieved better performance than most non-graph approaches.
We introduce an approach called high-order multi-view clustering (HMvC) to explore the topology structure information of generic data.
arXiv Detail & Related papers (2022-09-22T07:49:38Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
We propose a unified framework called Local-instance and Global-semantic Learning (GraphLoG) for self-supervised whole-graph representation learning.
Besides preserving the local similarities, GraphLoG introduces the hierarchical prototypes to capture the global semantic clusters.
An efficient online expectation-maximization (EM) algorithm is further developed for learning the model.
arXiv Detail & Related papers (2021-06-08T05:25:38Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.