論文の概要: Baseline Defenses for Adversarial Attacks Against Aligned Language
Models
- arxiv url: http://arxiv.org/abs/2309.00614v1
- Date: Fri, 1 Sep 2023 17:59:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 12:41:26.627208
- Title: Baseline Defenses for Adversarial Attacks Against Aligned Language
Models
- Title(参考訳): 言語モデルに対する敵対的攻撃に対するベースライン防御
- Authors: Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John
Kirchenbauer, Ping-yeh Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping,
Tom Goldstein
- Abstract要約: 我々は,大規模言語モデルに対する主要な敵攻撃に対するベースライン防衛戦略を評価した。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
驚くべきことに、他のドメインで予想されるよりも、フィルタリングや前処理で成功しています。
- 参考スコア(独自算出の注目度): 109.75753454188705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models quickly become ubiquitous, their security
vulnerabilities are critical to understand. Recent work shows that text
optimizers can produce jailbreaking prompts that bypass moderation and
alignment. Drawing from the rich body of work on adversarial machine learning,
we approach these attacks with three questions: What threat models are
practically useful in this domain? How do baseline defense techniques perform
in this new domain? How does LLM security differ from computer vision?
We evaluate several baseline defense strategies against leading adversarial
attacks on LLMs, discussing the various settings in which each is feasible and
effective. Particularly, we look at three types of defenses: detection
(perplexity based), input preprocessing (paraphrase and retokenization), and
adversarial training. We discuss white-box and gray-box settings and discuss
the robustness-performance trade-off for each of the defenses considered.
Surprisingly, we find much more success with filtering and preprocessing than
we would expect from other domains, such as vision, providing a first
indication that the relative strengths of these defenses may be weighed
differently in these domains.
- Abstract(参考訳): 大きな言語モデルが急速に普及するにつれて、そのセキュリティ脆弱性を理解することが不可欠である。
最近の研究では、テキストオプティマイザがモデレーションとアライメントをバイパスするジェイルブレイクプロンプトを生成できることが示されている。
敵対的機械学習に関する豊富な仕事から、私たちは3つの質問でこれらの攻撃にアプローチする。
この新しいドメインでは、ベースライン防御技術はどのように機能するのか?
LLMのセキュリティはコンピュータビジョンとどう違うのか?
我々は,LLMに対する先進的な攻撃に対する基本的防御戦略を評価し,それぞれが実現可能かつ効果的である様々な設定について議論した。
特に,検出(複雑度ベース),入力前処理(paraphraseとretokenization),逆行訓練の3種類の防御について考察した。
ホワイトボックスとグレイボックスの設定を議論し、検討した各防御のロバスト性・性能上のトレードオフについて論じる。
驚くべきことに、私たちは、視覚など他のドメインで予想されるよりも、フィルタリングや前処理に成功しています。
関連論文リスト
- A LLM Assisted Exploitation of AI-Guardian [57.572998144258705]
IEEE S&P 2023で発表された敵に対する最近の防衛であるAI-Guardianの堅牢性を評価する。
我々は、このモデルを攻撃するためのコードを書かず、代わりに、GPT-4に命令とガイダンスに従って全ての攻撃アルゴリズムを実装するよう促します。
このプロセスは驚くほど効果的で効率的であり、言語モデルでは、この論文の著者が実行したよりも高速に曖昧な命令からコードを生成することもあった。
論文 参考訳(メタデータ) (2023-07-20T17:33:25Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
視覚入力の連続的かつ高次元的な性質は、敵対的攻撃に対する弱いリンクであることを示す。
我々は、視力統合されたLLMの安全ガードレールを回避するために、視覚的敵の例を利用する。
本研究は,マルチモダリティの追求に伴う敵のエスカレーションリスクを浮き彫りにする。
論文 参考訳(メタデータ) (2023-06-22T22:13:03Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - TextDefense: Adversarial Text Detection based on Word Importance Entropy [38.632552667871295]
NLPモデルの新たな逆例検出フレームワークであるTextDefenseを提案する。
実験の結果,TextDefenseは異なるアーキテクチャ,データセット,アタックメソッドに適用可能であることがわかった。
我々はNLPの敵攻撃と防衛方法の原理に対する洞察を提供する。
論文 参考訳(メタデータ) (2023-02-12T11:12:44Z) - Defending Against Person Hiding Adversarial Patch Attack with a
Universal White Frame [28.128458352103543]
高性能物体検出ネットワークは、敵のパッチ攻撃に対して脆弱である。
人身攻撃は、多くの安全クリティカルなアプリケーションにおいて深刻な問題として浮上している。
防御パターンを最適化することで人身攻撃を緩和する新しい防衛戦略を提案する。
論文 参考訳(メタデータ) (2022-04-27T15:18:08Z) - StratDef: Strategic Defense Against Adversarial Attacks in ML-based
Malware Detection [0.0]
StratDefは、移動目標防衛アプローチに基づく戦略的防衛システムである。
我々は,StratDefが最強の敵対的脅威に直面した場合でも,他の防御よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-02-15T16:51:53Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - TROJANZOO: Everything you ever wanted to know about neural backdoors
(but were afraid to ask) [28.785693760449604]
TROJANZOOは、ニューラルバックドア攻撃/防御を評価するための最初のオープンソースプラットフォームです。
12の代表的な攻撃、15の最先端の防御、6の攻撃パフォーマンスメトリクス、10の防衛ユーティリティメトリクス、および攻撃防御相互作用の分析のための豊富なツールがあります。
既存の攻撃/防御の体系的な調査を行い、多くの興味深い発見をもたらします。
論文 参考訳(メタデータ) (2020-12-16T22:37:27Z) - Attack Agnostic Adversarial Defense via Visual Imperceptible Bound [70.72413095698961]
本研究の目的は、目視攻撃と目視攻撃の両方に対して一定の範囲内で堅牢な防衛モデルを設計することである。
提案するディフェンスモデルは,MNIST,CIFAR-10,Tiny ImageNetデータベース上で評価される。
提案アルゴリズムは攻撃非依存であり,攻撃アルゴリズムの知識を必要としない。
論文 参考訳(メタデータ) (2020-10-25T23:14:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。