論文の概要: Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models
- arxiv url: http://arxiv.org/abs/2309.01074v1
- Date: Sun, 3 Sep 2023 04:34:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 21:41:52.105557
- Title: Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models
- Title(参考訳): 多次元ガウス過程状態空間モデルにおける効率的なモデリングと推論に向けて
- Authors: Zhidi Lin, Juan Maro\~nas, Ying Li, Feng Yin and Sergios Theodoridis
- Abstract要約: 我々は,高次元潜在状態空間における遷移関数を効率的にモデル化するために,効率的な変換ガウス過程(ETGP)をGPSSMに統合することを提案する。
また,パラメータ数および計算複雑性の観点から,既存の手法を超越した変分推論アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 11.13664702335756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Gaussian process state-space model (GPSSM) has attracted extensive
attention for modeling complex nonlinear dynamical systems. However, the
existing GPSSM employs separate Gaussian processes (GPs) for each latent state
dimension, leading to escalating computational complexity and parameter
proliferation, thus posing challenges for modeling dynamical systems with
high-dimensional latent states. To surmount this obstacle, we propose to
integrate the efficient transformed Gaussian process (ETGP) into the GPSSM,
which involves pushing a shared GP through multiple normalizing flows to
efficiently model the transition function in high-dimensional latent state
space. Additionally, we develop a corresponding variational inference algorithm
that surpasses existing methods in terms of parameter count and computational
complexity. Experimental results on diverse synthetic and real-world datasets
corroborate the efficiency of the proposed method, while also demonstrating its
ability to achieve similar inference performance compared to existing methods.
Code is available at \url{https://github.com/zhidilin/gpssmProj}.
- Abstract(参考訳): ガウス過程状態空間モデル(GPSSM)は複雑な非線形力学系をモデル化するために広く注目を集めている。
しかし、既存のGPSSMは各潜在状態次元に別々のガウス過程(GP)を採用しており、計算複雑性とパラメータの拡散をエスカレートさせ、高次元潜在状態を持つ力学系をモデル化するための課題を提起している。
この障害を克服するために、高次元潜在状態空間における遷移関数を効率的にモデル化するために、共有GPを複数の正規化フローを通してプッシュする効率的な変換ガウス過程(ETGP)をGPSSMに統合することを提案する。
さらに,パラメータ数と計算複雑性の観点から,既存の手法を超越した変分推論アルゴリズムを開発した。
多様な合成および実世界のデータセットによる実験結果は,提案手法の効率を裏付けるとともに,既存手法と類似した推論性能を実現する能力を示す。
コードは \url{https://github.com/zhidilin/gpssmProj} で入手できる。
関連論文リスト
- Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
我々は、一般の2階粒子モデルにおけるデータ駆動的な発見に焦点を当てる。
本稿では、2つの実世界の魚の動きデータセットのモデリングへの応用について述べる。
論文 参考訳(メタデータ) (2023-11-01T23:45:15Z) - Subsurface Characterization using Ensemble-based Approaches with Deep
Generative Models [2.184775414778289]
逆モデリングは、計算コストとスパースデータセットによる予測精度の低下により、不適切な高次元アプリケーションに限られる。
Wasserstein Geneversarative Adrial Network と Gradient Penalty (WGAN-GP) と Ensemble Smoother を多重データ同化 (ES-MDA) と組み合わせる。
WGAN-GPは低次元の潜伏空間から高次元K場を生成するために訓練され、ES-MDAは利用可能な測定値を同化することにより潜伏変数を更新する。
論文 参考訳(メタデータ) (2023-10-02T01:27:10Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - Free-Form Variational Inference for Gaussian Process State-Space Models [21.644570034208506]
ベイズGPSSMにおける新しい推論法を提案する。
本手法はハミルトニアンモンテカルロの誘導による自由形式変分推論に基づく。
提案手法は, 競合する手法よりも, 遷移力学や潜伏状態をより正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-02-20T11:34:16Z) - Towards Flexibility and Interpretability of Gaussian Process State-Space
Model [4.75409418039844]
我々はTGPSSMと呼ばれる新しい確率的状態空間モデルを提案する。
TGPSSMはパラメトリック正規化フローを利用して、標準GPSSMのGPプリエントを豊かにする。
本稿では,潜在状態の変動分布に柔軟かつ最適な構造を提供するスケーラブルな変分推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-21T01:26:26Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
速度場データの不均一および動的パターンを学習するモデルを開発した。
複雑な多車間相互作用のNGSIMデータセットに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T17:45:46Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
多くの共通制御アプリケーションにおいて、優れた性能を達成するためには、グローバルに正確なモデルを必要としない。
本稿では,状態-作用空間の有界部分集合上の正確なモデルを得ることを目的としたガウス過程状態空間モデルに対する能動的学習戦略を提案する。
モデル予測制御を用いることで、探索中に収集した情報を統合し、探索戦略を適応的に改善する。
論文 参考訳(メタデータ) (2020-05-04T05:35:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。