論文の概要: Multicollinearity Resolution Based on Machine Learning: A Case Study of Carbon Emissions
- arxiv url: http://arxiv.org/abs/2309.01115v3
- Date: Thu, 02 Jan 2025 14:59:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 14:33:50.770223
- Title: Multicollinearity Resolution Based on Machine Learning: A Case Study of Carbon Emissions
- Title(参考訳): 機械学習に基づくマルチコリニアリティの解決:二酸化炭素排出量のケーススタディ
- Authors: Xuanming Zhang, Xiaoxue Wang, Yonghang Chen,
- Abstract要約: 本研究では,DBSCANクラスタリングとペナル化回帰モデルを用いた一般的な分析フレームワークを提案する。
この枠組みを適用して2000年から2019年までの46の産業のエネルギー消費データを分析した結果、中国では16のカテゴリーが特定された。
- 参考スコア(独自算出の注目度): 0.588718946589364
- License:
- Abstract: This study presents a general analytical framework using DBSCAN clustering and penalized regression models to address multifactor problems with structural complexity and multicollinearity issues, such as carbon emission issue. The framework leverages DBSCAN for unsupervised learning to objectively cluster features. Meanwhile, penalized regression considers model complexity control and high dimensional feature selection to identify dominant influencing factors. Applying this framework to analyze energy consumption data for 46 industries from 2000 to 2019 identified 16 categories in the sample of China. We quantitatively assessed emission characteristics and drivers for each. The results demonstrate the framework's analytical approach can identify primary emission sources by category, providing quantitative references for decision-making. Overall, this framework can evaluate complex regional issues like carbon emissions to support policymaking. This research preliminarily validated its application value in identifying opportunities for emission reduction worldwide.
- Abstract(参考訳): 本研究では,DBSCANクラスタリングとペナル化回帰モデルを用いて,構造的複雑性や二酸化炭素排出量問題などの多成分問題に対処する一般的な分析フレームワークを提案する。
このフレームワークはDBSCANを教師なし学習に活用し、機能を客観的にクラスタリングする。
一方、ペナル化回帰はモデル複雑性制御と高次元特徴選択を考慮し、支配的な影響要因を特定する。
この枠組みを適用して2000年から2019年までの46の産業のエネルギー消費データを分析した結果、中国では16のカテゴリーが特定された。
それぞれの排出特性と運転者について定量的に評価した。
その結果, フレームワークの分析手法により, 主要な排出源をカテゴリー別に同定し, 意思決定の定量的基準を提供することができた。
全体として、この枠組みは政策立案を支援するために二酸化炭素排出量のような複雑な地域問題を評価できる。
この研究は、世界中の排出削減の機会を特定するために、その適用価値を事前に検証した。
関連論文リスト
- A Structured Reasoning Framework for Unbalanced Data Classification Using Probabilistic Models [1.6951945839990796]
本稿では,不均衡データに対するマルコフネットワークモデルについて検討し,分類バイアスとマイノリティクラス認識能力不足の問題を解くことを目的とした。
実験の結果,マルコフネットワークは重み付け精度,F1スコア,AUC-ROCなどの指標で良好に動作することがわかった。
将来の研究は、大規模不均衡なデータ環境における効率的なモデルトレーニング、構造最適化、ディープラーニングの統合に焦点を当てることができる。
論文 参考訳(メタデータ) (2025-02-05T17:20:47Z) - CarbonChat: Large Language Model-Based Corporate Carbon Emission Analysis and Climate Knowledge Q&A System [4.008184902967172]
大規模言語モデルに基づくコーポレートカーボンエミッション分析と気候知識Q&Aシステムを提案する。
ルールベースおよび長文文書のセグメンテーションを扱うために,多種多様なインデックスモジュール構築法を提案する。
炭素排出量分析のための14の次元が確立されており、レポートの要約、関連性評価、カスタマイズされた応答を可能にしている。
論文 参考訳(メタデータ) (2025-01-03T08:45:38Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
我々は、RAGモデルの予測が誤りであり、現実のアプリケーションにおいて制御不能なリスクをもたらす可能性がどの程度あるかに焦点を当てる。
本研究は,RAGの予測に影響を及ぼす2つの重要な潜伏要因を明らかにする。
我々は,これらの要因をモデルに誘導し,その応答に与える影響を解析する,反実的プロンプトフレームワークを開発した。
論文 参考訳(メタデータ) (2024-09-24T14:52:14Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
モデルに基づく関数近似を用いた平均フィールドゲーム(MFG)における強化学習のサンプル複雑性について検討した。
本稿では、モデルクラスの複雑性を特徴付けるためのより効果的な概念である部分モデルベースエルダー次元(P-MBED)を紹介する。
論文 参考訳(メタデータ) (2024-02-08T14:54:47Z) - Towards risk-informed PBSHM: Populations as hierarchical systems [0.0]
本稿では、リスクベースの意思決定プロセスがそれらの内部で特定されるように、構造群を形式的に表現する。
人口ベース表現は、断層木を定義する確率論的リスクベースの決定枠組みの中で使用される構造の階層的表現の拡張である。
論文 参考訳(メタデータ) (2023-03-13T15:42:50Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - Deviance Matrix Factorization [6.509665408765348]
偏差に基づくデータ損失に対する一般的な行列係数化について検討し、任意の特異値分解を2乗誤差損失を超えて拡張する。
本手法は,一般化線形モデル(GLM)から古典統計手法を応用し,入射重みによる構造零点の許容に十分柔軟な効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-10-12T01:27:55Z) - Group Heterogeneity Assessment for Multilevel Models [68.95633278540274]
多くのデータセットは固有のマルチレベル構造を含む。
この構造を考慮に入れることは、そのようなデータ上で行われた統計分析の正確性と校正にとって重要である。
本稿では,データ内のグループ化変数のレベルの違いを効率的に評価するフレキシブルなフレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-06T12:42:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。