論文の概要: AI driven B-cell Immunotherapy Design
- arxiv url: http://arxiv.org/abs/2309.01122v1
- Date: Sun, 3 Sep 2023 09:14:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 21:23:14.765333
- Title: AI driven B-cell Immunotherapy Design
- Title(参考訳): AIによるB細胞免疫療法の設計
- Authors: Bruna Moreira da Silva (1), David B. Ascher (2), Nicholas Geard (1),
Douglas E. V. Pires (1) ((1) The University of Melbourne, (2) The University
of Queensland)
- Abstract要約: 抗原中和と除去ヒンジの効果は、パラトープ-エピトープ相互作用の強さ、感受性、特異性に影響を及ぼす。
近年、人工知能と機械学習の手法は大きな進歩を遂げ、タンパク質の構造とその複合体の予測に革命をもたらした。
本稿では,B細胞免疫療法設計分野における機械学習ツールとそのフレームワークの進歩に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Antibodies, a prominent class of approved biologics, play a crucial role in
detecting foreign antigens. The effectiveness of antigen neutralisation and
elimination hinges upon the strength, sensitivity, and specificity of the
paratope-epitope interaction, which demands resource-intensive experimental
techniques for characterisation. In recent years, artificial intelligence and
machine learning methods have made significant strides, revolutionising the
prediction of protein structures and their complexes. The past decade has also
witnessed the evolution of computational approaches aiming to support
immunotherapy design. This review focuses on the progress of machine
learning-based tools and their frameworks in the domain of B-cell immunotherapy
design, encompassing linear and conformational epitope prediction, paratope
prediction, and antibody design. We mapped the most commonly used data sources,
evaluation metrics, and method availability and thoroughly assessed their
significance and limitations, discussing the main challenges ahead.
- Abstract(参考訳): 抗体は、外国の抗原を検出する上で重要な役割を担っている。
抗原中和と除去ヒンジの効果は、資源集約的な実験技術を必要とするパラトープ-エピトープ相互作用の強さ、感受性、特異性に影響を及ぼす。
近年、人工知能と機械学習の手法は大きな進歩を遂げ、タンパク質構造とその複合体の予測に革命をもたらした。
過去10年間、免疫療法の設計を支援する計算手法の進化も見られた。
本総説では,B細胞免疫療法設計における機械学習ツールとそのフレームワークの進歩に焦点をあて,リニアおよびコンフォーメーションエピトープ予測,パラトープ予測,抗体設計を包含する。
最も一般的に使用されるデータソース、評価メトリクス、メソッドの可用性をマッピングし、その重要性と限界を徹底的に評価し、今後の主な課題について議論した。
関連論文リスト
- Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection [6.949493332885247]
ProVaccineは、タンパク質配列と構造を潜在ベクトル表現に統合する、新しいディープラーニングソリューションである。
現在までに最も包括的な免疫原性データセットをコンパイルし、細菌、ウイルス、腫瘍から9,500以上の抗原配列、構造、および免疫原性ラベルを含む。
私たちの研究はワクチン設計に有効なツールを提供し、将来の研究に有用なベンチマークを設定します。
論文 参考訳(メタデータ) (2024-10-03T16:33:35Z) - BeeTLe: A Framework for Linear B-Cell Epitope Prediction and
Classification [0.43512163406551996]
本稿では, 線形B細胞予測と抗体型特異的分類のための, 深層学習に基づく新しいフレームワークを提案する。
そこで本研究では, モデルが抗体の表現を学習するのを助けるために, 固有分解に基づくアミノ酸符号化法を提案する。
最大の公開データベースからキュレートしたデータに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-09-05T09:18:29Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
我々は、抗体配列から抗体構造を予測するために、xTrimoABFoldという新しいモデルを開発した。
CDRにおけるドメイン特異的焦点損失のアンサンブル損失とフレーム整合点損失を最小化することにより,PDBの抗体構造をエンドツーエンドにトレーニングした。
論文 参考訳(メタデータ) (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
深層学習に基づく計算抗体の設計は、人間の経験を補完する可能性のあるデータから自動的に抗体パターンをマイニングするので、注目を集めている。
計算手法は高品質な抗体構造データに大きく依存しており、非常に限定的である。
幸いなことに、CDRをモデル化し、構造データへの依存を軽減するために有効な抗体の配列データが多数存在する。
論文 参考訳(メタデータ) (2022-10-26T15:31:36Z) - Antibody Representation Learning for Drug Discovery [7.291511531280898]
新規なSARS-CoV-2抗体結合データセットと追加ベンチマークデータセットについて報告する。
従来の統計的シーケンスモデル,各データセットの教師付き学習,および抗体特異的事前訓練言語モデルの微調整の3つのクラスを比較した。
実験結果から,特徴表現の自己教師付き事前学習は,従来の手法よりも大幅に改善されていることが示唆された。
論文 参考訳(メタデータ) (2022-10-05T13:48:41Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Neural message passing for joint paratope-epitope prediction [0.0]
抗体は、抗原に結合して抗原を検出し中和する免疫系のタンパク質である。
抗体-抗原相互作用における結合部位の予測は、それぞれパラトープおよびパラトープとして知られ、ワクチンおよび合成抗体発生の鍵となる。
論文 参考訳(メタデータ) (2021-05-31T16:37:55Z) - Sequence-based deep learning antibody design for in silico antibody
affinity maturation [0.0]
治療リードの最適化ステップは抗体発見パイプラインでますます人気が高まっている。
従来の方法とシリコのアプローチは、特定の標的抗原に対して高い結合親和性を有する候補を生成することを目指している。
本研究では,抗体親和性予測の観点から,抗体-抗原相互作用を表現するための異なるグラフに基づく設計について検討した。
論文 参考訳(メタデータ) (2021-02-21T02:48:31Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。