論文の概要: Neural Vector Fields: Generalizing Distance Vector Fields by Codebooks
and Zero-Curl Regularization
- arxiv url: http://arxiv.org/abs/2309.01512v1
- Date: Mon, 4 Sep 2023 10:42:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 19:03:29.345075
- Title: Neural Vector Fields: Generalizing Distance Vector Fields by Codebooks
and Zero-Curl Regularization
- Title(参考訳): ニューラルベクトル場:コードブックとゼロクルル正則化による距離ベクトル場一般化
- Authors: Xianghui Yang, Guosheng Lin, Zhenghao Chen, Luping Zhou
- Abstract要約: メッシュと暗黙的符号なし距離関数(UDF)を演算する明示的な学習プロセスを採用した新しい3D表現であるNeural Vector Fields (NVF)を提案する。
両NVFを水密化・非水密化・非水密化・非水密化・非水密化・非水密化・非水密化・非水密化・非水密化・クロスドメイン化の4つのシナリオで評価した。
- 参考スコア(独自算出の注目度): 73.3605319281966
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent neural networks based surface reconstruction can be roughly divided
into two categories, one warping templates explicitly and the other
representing 3D surfaces implicitly. To enjoy the advantages of both, we
propose a novel 3D representation, Neural Vector Fields (NVF), which adopts the
explicit learning process to manipulate meshes and implicit unsigned distance
function (UDF) representation to break the barriers in resolution and topology.
This is achieved by directly predicting the displacements from surface queries
and modeling shapes as Vector Fields, rather than relying on network
differentiation to obtain direction fields as most existing UDF-based methods
do. In this way, our approach is capable of encoding both the distance and the
direction fields so that the calculation of direction fields is
differentiation-free, circumventing the non-trivial surface extraction step.
Furthermore, building upon NVFs, we propose to incorporate two types of shape
codebooks, \ie, NVFs (Lite or Ultra), to promote cross-category reconstruction
through encoding cross-object priors. Moreover, we propose a new regularization
based on analyzing the zero-curl property of NVFs, and implement this through
the fully differentiable framework of our NVF (ultra). We evaluate both NVFs on
four surface reconstruction scenarios, including watertight vs non-watertight
shapes, category-agnostic reconstruction vs category-unseen reconstruction,
category-specific, and cross-domain reconstruction.
- Abstract(参考訳): 最近のニューラルネットワークに基づく表面再構成は、大まかに2つのカテゴリに分けられる: 1つのワープテンプレートが明示的に、もう1つは暗黙的に3D表面を表す。
両者の利点を享受するために,メッシュを操作するための明示的な学習プロセスと暗黙の符号なし距離関数(UDF)表現を採用し,解像度とトポロジーの障壁を断ち切る新しい3D表現であるNeural Vector Fields(NVF)を提案する。
これは、既存のudfベースの手法のように方向場を得るためにネットワークの微分に頼るのではなく、表面クエリからの変位を直接予測し、形状をベクトル場としてモデル化することで達成される。
この方法では, 距離場と方向場の両方をエンコードし, 方向場の計算は微分自由であり, 非自明な表面抽出ステップを回避できる。
さらに, NVFをベースとした2種類の形状コードブック, \ie, NVFs (Lite or Ultra) を組み込むことにより, クロスオブジェクトを符号化することで, カテゴリ間再構築を促進することを提案する。
さらに,NVFのゼロカール特性の解析に基づく新たな正規化を提案し,NVF(ultra)の完全微分可能なフレームワークを通じてこれを実装した。
本研究では, 水密と非水密の形状, カテゴリー非依存の再構成, カテゴリー固有の再構築, クロスドメインの再構築を含む4つの表面再構成シナリオにおいて, 両方のnvfを評価した。
関連論文リスト
- Shrinking: Reconstruction of Parameterized Surfaces from Signed Distance Fields [2.1638817206926855]
符号付き距離場(SDF)から明示的パラメータ化曲面を再構成する新しい手法を提案する。
本手法では, パラメータ化初期球面を対象のSDF形状に適合させ, 微分可能性と表面パラメータ化を連続的に保持する。
これにより、テクスチャマッピング、幾何学処理、アニメーション、有限要素解析などの下流アプリケーションが可能になる。
論文 参考訳(メタデータ) (2024-10-04T03:39:15Z) - Split-and-Fit: Learning B-Reps via Structure-Aware Voronoi Partitioning [50.684254969269546]
本稿では,3次元CADモデルのバウンダリ表現(B-Reps)を取得する新しい手法を提案する。
各パーティション内に1つのプリミティブを導出するために空間分割を適用する。
我々のネットワークはニューラルなボロノイ図でNVD-Netと呼ばれ、訓練データからCADモデルのボロノイ分割を効果的に学習できることを示す。
論文 参考訳(メタデータ) (2024-06-07T21:07:49Z) - Neural Vector Fields: Implicit Representation by Explicit Learning [63.337294707047036]
ニューラルベクトル場 (Neural Vector Fields, NVF) という新しい3次元表現法を提案する。
メッシュを直接操作するための明示的な学習プロセスを採用するだけでなく、符号なし距離関数(UDF)の暗黙的な表現も採用している。
提案手法は,まず表面への変位クエリを予測し,テキスト再構成として形状をモデル化する。
論文 参考訳(メタデータ) (2023-03-08T02:36:09Z) - Factor Fields: A Unified Framework for Neural Fields and Beyond [50.29013417187368]
本稿では、信号のモデリングと表現のための新しいフレームワークであるFacter Fieldsを紹介する。
我々のフレームワークは、NeRF、Plenoxels、EG3D、Instant-NGP、TensoRFなどの最近の信号表現に対応している。
この表現は,2次元画像回帰作業における画像の近似精度の向上,3次元符号付き距離場再構築時の幾何学的品質の向上,および放射場再構成作業におけるコンパクト性の向上を実現している。
論文 参考訳(メタデータ) (2023-02-02T17:06:50Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
本稿では2次元画像からボリュームレンダリングにより任意の位相で表面を再構成する新しい手法であるNeuralUDFを提案する。
本稿では,表面をUDF(Unsigned Distance Function)として表現し,ニューラルUDF表現を学習するための新しいボリュームレンダリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-25T15:21:45Z) - Neural Vector Fields for Implicit Surface Representation and Inference [73.25812045209001]
近年, 3次元形状を正確に表現し, 学習する試みが盛んに行われている。
我々は、3次元空間における単位ベクトルを考慮し、それをベクトル場(Vector Field, VF)と呼ぶ新しい基本表現を開発する。
VF表現の利点は、オープン、クローズド、多層化、平面面の断片化である。
論文 参考訳(メタデータ) (2022-04-13T17:53:34Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
マルチビューRGB画像から新しい3次元顔再構成法を提案する。
従来の3次元形態素モデルに基づく手法とは異なり,本手法は暗黙の表現を利用してリッチな幾何学的特徴を符号化する。
いくつかのベンチマークデータセットに対する実験結果から,提案手法は代替ベースラインよりも優れ,最先端の手法に比べて優れた顔再構成結果が得られることが示された。
論文 参考訳(メタデータ) (2021-12-05T07:02:53Z) - Coupling Explicit and Implicit Surface Representations for Generative 3D
Modeling [41.79675639550555]
本稿では,2つの相補的な形状表現を利用する3次元曲面を表現するニューラルアーキテクチャを提案する。
これら2つの表現は、新しい一貫性損失を導入することで相乗効果を得る。
我々のハイブリッドアーキテクチャの出力結果は、2つの等価な単一表現ネットワークの出力よりも優れている。
論文 参考訳(メタデータ) (2020-07-20T17:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。