論文の概要: Shrinking: Reconstruction of Parameterized Surfaces from Signed Distance Fields
- arxiv url: http://arxiv.org/abs/2410.03123v1
- Date: Fri, 4 Oct 2024 03:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:46:34.517446
- Title: Shrinking: Reconstruction of Parameterized Surfaces from Signed Distance Fields
- Title(参考訳): 研削:符号付き距離場からのパラメータ化表面の再構成
- Authors: Haotian Yin, Przemyslaw Musialski,
- Abstract要約: 符号付き距離場(SDF)から明示的パラメータ化曲面を再構成する新しい手法を提案する。
本手法では, パラメータ化初期球面を対象のSDF形状に適合させ, 微分可能性と表面パラメータ化を連続的に保持する。
これにより、テクスチャマッピング、幾何学処理、アニメーション、有限要素解析などの下流アプリケーションが可能になる。
- 参考スコア(独自算出の注目度): 2.1638817206926855
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We propose a novel method for reconstructing explicit parameterized surfaces from Signed Distance Fields (SDFs), a widely used implicit neural representation (INR) for 3D surfaces. While traditional reconstruction methods like Marching Cubes extract discrete meshes that lose the continuous and differentiable properties of INRs, our approach iteratively contracts a parameterized initial sphere to conform to the target SDF shape, preserving differentiability and surface parameterization throughout. This enables downstream applications such as texture mapping, geometry processing, animation, and finite element analysis. Evaluated on the typical geometric shapes and parts of the ABC dataset, our method achieves competitive reconstruction quality, maintaining smoothness and differentiability crucial for advanced computer graphics and geometric deep learning applications.
- Abstract(参考訳): 本稿では,3次元曲面に対して広く用いられている暗黙的ニューラル表現(INR)であるSigned Distance Fields (SDFs) から,明示的パラメータ化曲面を再構成する手法を提案する。
従来のマーチングキューブのような再構成手法では,INRの連続的および微分可能特性を損なう離散メッシュを抽出するが,本手法ではパラメータ化初期球を目標のSDF形状に合わせて反復的に収縮させ,微分可能性と表面パラメータ化を保った。
これにより、テクスチャマッピング、幾何学処理、アニメーション、有限要素解析などの下流アプリケーションが可能になる。
ABCデータセットの典型的な幾何学的形状と部分から評価し,高度なコンピュータグラフィックスや幾何学的深層学習アプリケーションに欠かせないスムーズさと差別性を保ちながら,競争力のある再現性を実現する。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
論文 参考訳(メタデータ) (2024-10-02T03:10:38Z) - ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
微妙な幾何を同時に復元し、異なる特徴を持つ領域をまたいだ滑らかさを保つことは自明ではない。
そこで我々は,ND-SDFを提案する。ND-SDFは,通常のシーンとそれ以前のシーンの角偏差を表す正規偏向場を学習する。
本手法は, 壁面や床面などのスムーズなテクスチャ構造を得るだけでなく, 複雑な構造の幾何学的詳細も保存する。
論文 参考訳(メタデータ) (2024-08-22T17:59:01Z) - Neural Vector Fields: Generalizing Distance Vector Fields by Codebooks
and Zero-Curl Regularization [73.3605319281966]
メッシュと暗黙的符号なし距離関数(UDF)を演算する明示的な学習プロセスを採用した新しい3D表現であるNeural Vector Fields (NVF)を提案する。
両NVFを水密化・非水密化・非水密化・非水密化・非水密化・非水密化・非水密化・非水密化・非水密化・クロスドメイン化の4つのシナリオで評価した。
論文 参考訳(メタデータ) (2023-09-04T10:42:56Z) - Hybrid-CSR: Coupling Explicit and Implicit Shape Representation for
Cortical Surface Reconstruction [28.31844964164312]
Hybrid-CSRは、皮質表面再構成のための明示的および暗黙的な形状表現を組み合わせた幾何学的深層学習モデルである。
本手法は, 明示的(指向性点雲)と暗黙的(指標関数)の皮質表面再構成を統一する。
論文 参考訳(メタデータ) (2023-07-23T11:32:14Z) - HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces [6.382138631957651]
我々は新しい暗黙表面再構成法であるHigh-Resolution NeuSを提案する。
HR-NeuSは大規模な再構成精度を維持しながら高周波表面形状を復元する。
我々は,DTUおよびBlendedMVSデータセットを用いた実験により,従来の手法と同等の精度で定性的に詳細かつ定量的な3次元測地を生成できることを実証した。
論文 参考訳(メタデータ) (2023-02-14T02:25:16Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
本稿では2次元画像からボリュームレンダリングにより任意の位相で表面を再構成する新しい手法であるNeuralUDFを提案する。
本稿では,表面をUDF(Unsigned Distance Function)として表現し,ニューラルUDF表現を学習するための新しいボリュームレンダリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-25T15:21:45Z) - Differentiable Rendering of Neural SDFs through Reparameterization [32.47993049026182]
ニューラルSDFにおける幾何学的シーンパラメータに対する正しい勾配を自動的に計算する手法を提案する。
提案手法は,地域サンプリング技術に基づいて,不連続性を考慮した連続的なワーピング機能を開発する。
我々の微分可能法は、多視点画像からの神経形状を最適化し、同等の3D再構成を生成できる。
論文 参考訳(メタデータ) (2022-06-10T20:30:26Z) - Learning Signed Distance Field for Multi-view Surface Reconstruction [24.090786783370195]
ステレオマッチングと特徴整合性の知識を生かした新しいニューラルネットワーク表面再構成フレームワークを提案する。
サインされた距離場(SDF)と表面光場(SDF)をそれぞれ、シーン形状と外観を表すために適用する。
本手法は,地形推定のロバスト性を向上し,複雑なシーントポロジの再構築を支援する。
論文 参考訳(メタデータ) (2021-08-23T06:23:50Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z) - Deep Manifold Prior [37.725563645899584]
本稿では,3次元形状の表面などの多様体構造データに先行する手法を提案する。
この方法で生成された曲面は滑らかであり、ガウス過程を特徴とする制限的な挙動を示し、完全連結および畳み込みネットワークに対して数学的にそのような特性を導出する。
論文 参考訳(メタデータ) (2020-04-08T20:47:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。